2 кровеносные сосуды в компактном веществе кости. Строение и состав костей. Химический состав и физические свойства костей

О своем организме человек знает много, например, где расположены органы, какую функцию они выполняют. Почему бы не проникнуть вглубь кости и не узнать ее строение и состав? Это очень занимательно, ведь химический состав костей весьма разнообразен. Он помогает понять, почему каждый костный элемент очень важен и какую функцию он несет.

Основная информация

Живая кость у взрослых людей имеет:

  • 50% - вода;
  • 21, 85% - вещества неорганического типа;
  • 15, 75% - жир;
  • 12,4% - коллагеновые волокна.

Вещества неорганического типа – это разные соли. Большая их часть представлена известковым фосфатом (шестьдесят процентов). В не таком большом количестве присутствует известковый карбонат и магниевый сульфат (5,9 и 1,4% соответственно). Интересно, что в костях представлены все земные элементы. Минеральные соли поддаются растворению. Для этого нужен некрепкий раствор азотной или соляной кислоты. Процесс растворения в этих веществах имеет свое название – декальцинация. После нее остается лишь органической вещество, которое сохраняет костную форму.

Органическое вещество отличается пористостью и эластичностью. Его можно сравнить с губкой. Что происходит, когда удаляется это вещество через сжигание? Кость по форме остается прежней, но теперь она становится хрупкой.

Понятно, что только взаимосвязь неорганических и органических веществ делает костный элемент прочным, упругим. Еще более прочной кость становится благодаря составу губчатого и компактного вещества.

Неорганический состав

Примерно век назад было высказано мнение, что костная ткань человека, точнее, ее кристаллы, по структуре похожи на апатиты. Со временем это было доказано. Костные кристаллы – гидроксилапатиты, а по форме похожи на палочки и пластины. Но кристаллы – это лишь доля минеральной фазы ткани, другая доля – это аморфный фосфат кальция. Его содержание зависит от возраста человека. У молодых людей, подростков и детей его много, больше, чем кристаллов. Впоследствии соотношение меняется, поэтому в более старшем возрасте больше уже кристаллов.

Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция

Организм взрослого человека имеет более одного килограмма кальция. Он содержится в основном в зубных и костных элементах. В сочетании с фосфатом образуется гидроксилапатит, который не растворяется. Особенность в том, что в костях основная часть кальция регулярно обновляется. Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция.

Минеральная доля имеет много ионов, но чистый гидроксилапатит их не содержит. Есть ионы хлора, магния и других элементов.

Органический состав

95% матрикса органического типа – это коллаген. Если говорить о его значимости, то вместе с минеральными элементами он является основным фактором, от которого зависят механические костные свойства. Коллаген ткани кости имеет особенности:

  • в нем больше оксипролина по сравнению с кожным коллагеном;
  • в нем много свободных ε-амино групп оксилизиновых и лизиновых остатков;
  • в нем больше фосфата, основная часть которого связана с сериновыми остатками.

Сухой деминерализованный костный матрикс содержит почти двадцать процентов белков неколлагеновых. Среди них есть части протеогликанов, но их немного. Органический матрикс содержит глюкозаминогликаны. Считается, что они напрямую связаны с оссификацией. Кроме того, если они изменяются, происходит окостенение. В костном матриксе есть липиды – прямой компонент ткани кости. Они участвуют в минерализации. Костный матрикс имеет еще одну особенность – в нем очень много цитрата. Почти девяносто его процентов – доля костной ткани. Считается, что цитрат важен для процесса минерализации.

Вещества кости

Большая часть костей взрослого человека имеет в составе пластинчатую костную ткань, из которой образуется два вида вещества: губчатой и компактное. Их распределение зависит от функциональных нагрузок, осуществляемых на кость.

Если рассматривать строение костей, то в образовании диафизов трубчатых костных элементов играет важную роль компактное вещество. Оно как тонкая пластина покрывает снаружи их эпифизы, плоские, губчатые кости, которые построены из губчатого вещества. В компактном веществе очень много тоненьких канальцев, которые состоят из кровеносных сосудов и волокон нервов. Некоторые каналы находятся в основном параллельно костной поверхности.

Стенки каналов, расположенных в центре, сформированы пластинками, толщина которых от четырех до пятнадцати мкм. Они как будто вставлены друг в друга. Один канал возле себя может иметь двадцать подобных пластинок. Состав кости включает в себя остеон, то есть объединение канала, расположенного в центре, с пластинками возле него. Между остеонами есть пространства, которые наполнены вставочными пластинками.

В строении кости не менее важное значение имеет губчатое вещество. Его название дает основание предположить, что оно похоже на губку. Так оно и есть. Она выстроена с балок, между которыми присутствуют ячейки. Кость человека постоянно испытывает нагрузки в виде сжатия и растяжения. Именно они определяют размеры балок, их расположение.

Костное строение включает надкостницу, то есть соединительнотканную оболочку. Она прочно соединена с костным элементом с помощью волокон, которые проходят в его глубину. Накостница имеет два слоя:

  1. Наружный, фиброзный. Он формируется волокнами коллагена, благодаря которым оболочка отличается прочностью. Этот слой имеет в строении нервы и сосуды.
  2. Внутренний, ростковый. В его строении есть остеогенные клетки, благодаря которым кость расширяется и восстанавливается после травм.

Получается, что надкостница выполняет три основные функции: трофическую, защитную, костеобразующую. Говоря о строении кости также следует упомянуть об эндосте. Им кость покрыта изнутри. Он похож на тонкую пластинку и несет в себе остеогенную функцию.

Еще немного о костях

Благодаря удивительному строению и составу кости обладают уникальными характеристиками. Они очень пластичны. Когда человек выполняет физические нагрузки, тренируется, кости проявляют гибкость и подстраиваются под изменяющиеся обстоятельства. То есть в зависимости от нагрузок увеличивается или уменьшается количество остеонов, меняется толщина пластинок веществ.

Каждый человек может посодействовать оптимальному костному развитию. Для этого необходимо регулярно и умеренно заниматься физическими упражнениями. Если в жизни преобладает сидячий образ действий, кости начнут ослабляться и станут более тонкими. Есть заболевания костей, которые ослабляют их, например, остеопороз, остеомиелит. На строение кости может оказать влияние профессия. Конечно, не последнюю роль играет наследственность.

Итак, на некоторые особенности костного строения человек не способен повлиять. Все же некоторые факторы зависят от него. Если с детства родители будут следить за тем, чтобы ребенок правильно питался и занимался умеренной физической нагрузкой, его кости будут в прекрасном состоянии. Это значительно повлияет на его будущее, ведь ребенок вырастет крепким, здоровым, то есть успешным человеком.

КОСНОЕ ВЕЩЕСТВО

КОСНОЕ ВЕЩЕСТВО небиогенные минералы и горные породы, образовавшиеся в основном или глубже биосферы (вне области жизни) или в пределах биосферы на глубине нескольких километров без участия живого вещества. Мертвые (косные) небиогенные горные породы и минералы по массе во много раз превышают массу всего живого вещества.

Экологический словарь , 2001

Косное вещество

небиогенные минералы и горные породы, образовавшиеся в основном или глубже биосферы (вне области жизни) или в пределах биосферы на глубине нескольких километров без участия живого вещества. Мертвые (косные) небиогенные горные породы и минералы по массе во много раз превышают массу всего живого вещества.

EdwART. Словарь экологических терминов и определений , 2010


Смотреть что такое "КОСНОЕ ВЕЩЕСТВО" в других словарях:

    По В. И. Вернадскому (1965), вещество, образуемое процессами, в которых живое, вещество не участвует (продукты тектонической деятельности, метеориты и др.). Часто вместо вещества косного употребляют термины “минеральные элементы”, “неорганическое … Экологический словарь

    Биогенное вещество это осадочные породы, состоящие из продуктов жизнедеятельности живых организмов или представляющие собой их разложившиеся остатки (известняки, ракушечные породы, горючие сланцы, ископаемые угли, нефть и др.). Биогенное… … Википедия

    Экологический словарь

    См. Вещество косное. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    1) совокупность живых организмов биосферы, численно выраженная в элементарном химическом составе, массе и энергии. Термин введён В. И. Вернадским (См. Вернадский). Ж. в. связано с биосферой материально и энергетически посредством… …

    - (от био... и греч. sphaira шар), оболочка Земли, состав, структура и энергетика которой определяются совокупной деятельностью живых организмов. Первые представления о Б. как «области жизни» и наружной оболочке Земли восходят к Ламарку. Термин… … Биологический энциклопедический словарь

    В широком смысле всякое изменение, в узком изменение положения тела в пространстве. Д. стало универсальным принципом в философии Гераклита («все течет»). Возможность Д. отрицалась Парменидом и Зеноном из Элей. Аристотель подразделил Д. на… … Философская энциклопедия

    - (от Био... и Сфера) оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов. Б. охватывает часть атмосферы, гидросферу и верхнюю часть литосферы,… … Большая советская энциклопедия

    У этого термина существуют и другие значения, см. Биосфера (значения). Биосфера (от др. греч. βιος жизнь и σφαῖρα сфера, шар) оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их … Википедия

    Биосфера - область существования и распространения жизни на Земле. Включает нижнюю часть атмосферы (в этом смысле называемую аэробиосферой), гидросферу (гидробиосферу), поверхность суши (террабиосферу) и литосферу (литобиосферу), населенные живыми… … Начала современного естествознания

Косное вещество - совокупность тех веществ в биосфере, в образовании которых живые организмы не участвуют.[ ...]

Косное вещество - это вещество, которое образуется без участия живого вещества. Примерами косного вещества являются изверженные горные породы.[ ...]

Вещество биосферы резко и глубоко неоднородно (§ 38): живое, косное, биогенное и биокосное, Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия, по сравнению с энергией косного вещества, уже в историческом времени огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Оно живет не случайно и независимо от биосферы, но есть закономерное проявление физико-химической ее организованности. Его образование и существование есть ее главная геологическая функция (ч. II).[ ...]

Косное вещество - неживое, но связанное с жизнью вещество, к которому относятся глубинные породы, выбрасываемые вулканами; при контакте с живым веществом превращается в биокосное.[ ...]

Вещество косное - неживое вещество, в образовании которого не участвовало вещество живое.[ ...]

ЖИВОЕ ВЕЩЕСТВО - согласно В.И. Вернадскому, «совокупность всех живых организмов, в данный момент существующих, численно выраженная в элементарном химическом составе, в весе, энергии» . Ж.в. неотделимо рт биосферы, являясь одной из самых могущественных геохимических сил нашей планеты, и обладает целым рядом уникальных свойств (напр., способно поляризовать свет в отличие от косного вещества - закон Пастера-Кюри). См. Жизнь.[ ...]

Биокосное вещество-это вещество, одновременно создаваемое и живыми организмами и косными процессами. Оно, по определению В. И. Вернадского, является закономерной структурой из живого и косного вещества.[ ...]

Классификация вещества биосферы, предложенная В.И. Вернадским, с логической точки зрения не является безупречной, так как выделенные категории вещества частично перекрывают друг друга. Так, вещество космического происхождения одновременно является и косным. Атомы многих элементов являются и радиоактивными, и рассеянными одновременно. Биокосное вещество», нельзя рассматривать в качестве особого типа вещества, поскольку оно состоит из двух веществ - живого и косного. По своему характеру это не вещество, а динамическая система, что подчеркивает и сам В.И. Вернад-ский.[ ...]

В-третьих, мы имеем вещество, образуемое процессами, в которых живое вещество не участвует: косное вещество, твердое, жидкое и газообразное, из которых только газообразное и жидкое (и дисперсное твердое) являются на поверхности биосферы носителями свободной энергии.[ ...]

Планетная астрономия и живое вещество (§ 167). Создание тропосферы как функция дисперсного живого вещества в геохорах и в гидросфере (§ 168). Разнородный с точки зрения энергетического эффекта химический элементарный состав вещества биосферы: живое, косное и биокосное вещество. Различия внутри живого вещества. Химический элементарный состав живого вещества (§ 171). Различное понимание химического состава живого вещества в физиологии растений и биогеохимии (§ 172).[ ...]

Фундаментальным отличием живого вещества от косного является охваченность его эволюционным процессом, непрерывно создающим новые формы живых существ. Многообразие форм жизни и их многофункциональность создают основу устойчивого круговорота веществ и канализированных потоков энергии. В этом специфика и залог устойчивости биосферы как уникальной оболочки земного шара.[ ...]

Особой категорией является биокосное вещество. В. И. Вернадский (1926) писал, что оно «создается в биосфере одновременно живыми организмами и косными процессами, представляя системы динамического равновесия тех и других». Организмы в биомосном веществе играют ведущую роль. Биокосное вещество планеты, таким образом,- это почва, кора выветривания, все природные воды, свойства которых зависят от деятельности на Земле живого вещества. Следовательно, биосфера - это та область Земли, которая охвачена влиянием живого вещества. Жизнь на Земле-самый выдающийся процесс на ее поверхности, получающий живительную энергию Солнца и вводящий в движение едва ли не все химические элементы таблицы Менделеева.[ ...]

Сравнение химического состава живого и косного вещества Земли - земной коры и вод Мирового океана показывает несоответствие распространенности химических элементов в косных компонентах и живом веществе (рис. 2.1, а-г). Так, в земной коре содержание углерода в 70 раз ниже, чем в живом веществе, а кремния, наоборот, намного больше.[ ...]

ЭКОСИСТЕМА -совокупность биотических и косных составляющих, которая, используя внешний поток энергии, создает более сильные связи (обмен веществом и информацией) внутри себя, чем между рассматриваемой совокупностью и ее окружением, что обеспечивает неопределенно долгую саморегуляцию и развитие целого под управляющим воздействием биотических составляющих.[ ...]

Если сравнить химический состав живого и косного веществ Земли, то нетрудно увидеть их значительное несоответствие. Так, содержание углерода в живом веществе в 70 раз выше, чем в косном. Для живых существ характерна избирательность в поглощении элементов, необходимых для жизнедеятельности, что породило в биосфере проблему дефицита и ограничение количества живого вещества на Земле. Выходом из этого положения является круговорот, когда элемент, пройдя ряд биологических и химических превращений, возвращается в состав первоначального химического соединения.[ ...]

Эволюционный процесс присущ только живому веществу. В косном веществе нашей планеты нет его проявлений. Те же самые минералы и горные породы образовывались в криптозойской эре , какие образуются и теперь. Исключением являются биокосные природные тела , всегда связанные так или иначе с живым веществом.[ ...]

Главной отличительной особенностью живого вещества в целом является способ использования энергии. Живые существа - уникальные природные объекты, могущие улавливать энергию, которая приходит из Космоса преимущественно в виде солнечного света, удерживать ее в виде сложных органических соединений (биомассы), передавать друг другу, трансформировать в механическую, электрическую, тепловую и другие виды энергии. Косные (неживые) тела не способны к столь сложным преобразованиям энергии, они преимущественно рассеивают ее: камень нагревается под действием солнечной энергии, но не может ни сойти с места, ни увеличить свою массу.[ ...]

Масса биосферы, в которую включено все органическое вещество биогенного происхождения (сложная смесь природных органических соединений, основными первоисточниками которых являются растения, или, по определению В. И. Вернадского, вещество, создаваемое и перерабатываемое организмами) и косного вещества других сфер, занятых биосферой, оценивается в 2,5-3,0x1024 г. В биосфере на долю тропосферы приходится 0,004x1024 г, гидросферы - 1,4x1024 г и литосферы в пределах биосферы - 1,6x1024 г.[ ...]

Состояния пространства (симметрия), отвечающие живому веществу биосферы. Резкое отличие симметрии косных тел биосферы от симметрии ее живого вещества (§ 132, 133). Четырехмерное Эвклидово пространство- время, в котором время является четвертым измерением, и пространство- время Эйнштейна не имеют проявления в конкретных явлениях симметрии (§ 134). В живом веществе мы видим проявления не пространства только, но особого пространства - времени, отражающегося на их симметрии и выражающегося в смене поколений и в старении. Эволюционный процесс как проявление пространства - времени. Принцип Д. Дана (§ 137). Связь между живым и косным. Биогенная миграция атомов (§ 138).[ ...]

Существует несколько стандартов на питьевую воду, и мы коснемся четырех наиболее важных: российского стандарта, определяемого соответствующими ГОСТами , стандарта ВОЗ (Всемирной организации здравоохранения), стандарта США и стандарта стран Европейского Союза (ЕС). Три последних стандарта приведены в книге , благодаря которой мы можем получить информацию о том, что понимается под питьевой водой в Америке и Европе. Упомянутые мной издания построены примерно одинаково: вначале идут таблицы с перечислением вредных веществ и указанием ПДК, а затем описания методик, по которым определяется концентрация в воде того или иного компонента. В методиках подробно описано, с помощью каких реактивов и приборов и как конкретно производятся анализы. Отмечу, что в наших прежних ГОСТах таких методик около тридцати, а в книге вдвое больше.[ ...]

В биосфере происходят процессы преобразования неорганического, косного вещества в органическое и обратной перестройки органических веществ в минеральные. Движение и преобразование веществ в биосфере осуществляется при непосредственном участии живого вещества, все виды которого специализировались на различных способах питания.[ ...]

Выше, в главах XV и XVI, указано, что в явлениях жизни, в аспекте живого вещества, мы встречаемся с явлением, резко отличным от обычного косного вещества планеты и связанным с особым состоянием пространствавремени, что в сущности предвидел Л. Пастер в XIX столетии, - явления по существу космического характера.[ ...]

В предыдущей главе я глубже обосновал, что коренное отличие живого вещества от косного связано с особым состоянием пространства (§ 132-133), занимаемого его телами, и что это пространство не может быть Эвклидовым пространством трех измерений и ярко выражается как особое пространство - время. До сих пор мы не знаем пока других явлений на нашей планете, которые бы отвечали тоже неэвклидовому пространству (§ 144).[ ...]

Здесь мы встречаемся как раз с тем явлением, которое характеризует живое вещество планеты и резко химически отличает его от ее косного вещества. Оно заключается в следующем, В то самое время, как количество минералов - химических соединений, им отвечающих, - исчисляется немногими тысячами (§ 188), число различных природных органических соединений, строящих тело живого вещества, исчисляется сотнями тысяч, вернее миллионами, так как в них сказывается индивидуальность, которая в такой степени никогда не встречается в минералах, где есть индивидуальность месторождений, но не индивидуальность особей.[ ...]

КРУГОВОРОТ БИОГЕОХИМИЧЕСКИЙ - это перемещения и превращения химических элементов через косную и органическую природу при активном участии живого вещества. Химические элементы циркулируют в биосфере по различным путям биологического круговорота: поглощаются живым веществом и заряжаются энергией, затем покидают живое вещество, отдавая накопленную энергию во внешнюю среду. Такие в большей или меньшей степени замкнутые пути были названы В.И.Вернадским “биогеохимическими циклами". Эти циклы можно подразделить на два основных типа: 1) круговорот газообразных веществ с резервным фондом в атмосфере или гидросфере (океан) и 2) осадочный цикл с резервным фондом в земной коре. Во всех биогеохимических циклах активную роль играет живое вещество. По этому поводу В.И.Вернадский (1965, с. 127) писал: “Живое вещество охватывает и перестраивает все химические процессы биосферы, действенная его энергия огромна. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени ”. К главным циклам можно отнести круговороты углерода, кислорода, азота, фосфора, серы и биогенных катионов. Ниже рассмотрим в качестве примера основные черты круговорота типичных биофильных элементов (углерода, кислорода и фосфора), играющих существенную роль в жизни биосферы.[ ...]

В.И. Вернадский рассматривал биосферу как область жизни, основа которой - взаимодействие живого и косного вещества: «живые организмы являются функцией биосферы и теснейшим образом материально и энергетически с ней связаны, являются огромной геологической силой, ее определяющей... Организмы представляют живое вещество, т.е. совокупность всех живых организмов, в данный момент существующих, численно выраженное в элементарном химическом составе, в весе, энергии. Оно связано с окружающей средой биогенным током атомов: своим дыханием, питанием, размножением». Таким образом, по мнению В.И. Вернадского, биогенная миграция атомов химических элементов, вызываемая солнечной энергией и проявляющаяся в процессе обмена веществ, роста и размножения организмов, является главной функцией биосферы.[ ...]

В конце концов все химические элементы Менделеевской таблицы, по-видимому, закономерно охвачены живым веществом. Это может служить косвенным подтверждением тому, что отличие живого и косного вещества планеты связано не с различием физико-химических проявлений, а с более общим различием состояния пространства-времени этих материал ьно-энергетических систем (§ И4).[ ...]

В биохимических функциях первого и второго рода мы впервые встречаемся в яркой форме с резким отличием косного и живого вещества в ходе геологического времени. В то самое время, как живое вещество меняется до неузнаваемости в своих формах и непрерывно и закономерно дает нам миллионы новых видов организмов и множество новых химических соединений, охваченное эволюционным процессом, косная материя планеты остается инертной, неподвижной и по характеру происходящих реакций только в эомы веков закономерно меняет свой атомный состав закономерным радиоактивным процессом, только что начинающим перед нами вскрываться (ч. I, гл. В геологическое время она практически остается неизменной в своем морфологическом характере. По сравнению с вечно подвижным и меняющимся химически и морфологически миром животных организмов, мир минералов остается неподвижным и неизменным с археозоя, за исключением биогенных минералов, которые создаются биохимической функцией второго рода (§ 195).[ ...]

Надо прежде всего построить ту геометрию, которая может соответствовать состоянию пространства живого вещества. При этом просто становится понятной обособленность живого вещества в окружающей его косной среде и принцип Реди , что живое всегда происходит из живого и что нет абиогенеза.[ ...]

Экосистема - единый природный комплекс, образованный живыми организмами и средой их обитания, в котором живые и косные компоненты связаны обменом веществ и энергии. Экосистема является саморазвивающейся термодинамически открытой системой. В отечественной литературе используется эквивалентное понятие "биогеоценоз".[ ...]

Точный учет - дело будущего. А пока приходится довольствоваться приблизительным учетом процентного содержания живого вещества в окружающей его косной природе. Такие подсчеты были мною несколько раз сделаны, и я приведу цифры для того, чтобы читатель имел ясное понятие, о чем идет речь.[ ...]

Говоря о токсической концентрации как о своеобразном индикаторе токсичности природно-антропогенных экосистем, нельзя не коснуться и таких важных понятий в экотоксикологии, как вредное вещество или токсикант - загрязнитель, метаболизм, канцерогенез, токсичность как результат избытка необходимых веществ и соединений, биогеохимические свойства токсикантов и их химически активные миграционные формы в окружающей природной среде.[ ...]

Почва (по В. И. Вернадскому) - биокосное тело природы, занимающее промежуточное положение между биологическими организмами и косными телами (горные породы, минералы). Является гигантской экологической системой, активно участвует в круговороте веществ и энергии в природе, поддерживает газовый состав атмосферы. Важнейшее свойство почвы - плодородие (способность обеспечить рост и размножение растений) нарушается в результате антропогенной деятельности: выпас скота, вспахивание, выращивание монокультур, уплотнение, нарушение гидрологического режима (уровня грунтовых вод), загрязнение. В связи с тем, что почва - это основа биологического круговорота, она становится источником миграции загрязненных веществ в гидросферу, атмосферу, в продукты питания (через растения и животных). Строительство дороги в результате указанных выше причин приводит к снижению плодородия почв.[ ...]

Это выражается в том, как я уже указал, что мы нигде не наблюдаем в природе абиогенеза - образования живого организма прямо из косной среды, что связь живого вещества с окружающей его косной средой проявляется только в биогенном токе атомов. Организмы размножаются поколениями, рождаются. Это процесс, как мы теперь знаем, длится миллиарды лет, и мы не знаем нигде на Земле следов времени, где бы живого вещества не было (§ 114-116).[ ...]

Под влиянием жизни значительная часть атомов, составляющих земную поверхность, находится в непрерывном, интенсивном движении. Живое вещество обладает способностью к пластичному изменению, приспособлению к изменениям среды, имеет свой процесс эволюции, проявляющийся в изменении с ходом геологического времени, вне зависимости от изменения среды. На протяжении геологического времени возрастает сила влияния живого вещества на биосферу, увеличивается его воздействие на косное вещество биосферы. Благодаря эволюции видов, непрерывно идущей и никогда не прекращающейся, резко меняется воздействие живого вещества на окружающую среду, распространяясь на все природные биокосные и биогенные тела, играющие основную роль в биосфере, в почвы, в наземные и подземные воды. Почвы и реки девона, например, иные, чем почвы третичного времени и нашей эпохи. Эволюция биосферы сама по себе вызывает усиление эволюционного процесса живого вещества.[ ...]

Можно проследить во всей биосфере, таким образом,- подчеркивает В. И. Вернадский,- порожденное жизнью движение молекул; оно охватывает собой всю стратосферу, всю область океанов, живую природу суши. Можно уловить его проявление в свободной атмосфере - в стратосфере и дальше до самой крайней границы планеты. Мы можем доказать его влияние далеко за пределами области жизни в глубоких слоях Земли, в совершенно для нас чуждых областях метаморфизма» . Огромная геохимическая роль живого вещества определяется тем, что элементы находятся в нем в более энергетическом состоянии (обусловленном аккумуляцией солнечной энергии), чем в косном веществе.[ ...]

Биогеоценоз (от био, греч. geo - земля и koinos - сообщество). Однородный участок земной поверхности с определенным составом живых (биоценозов) и косных (приземной слой атмосферы, солнечная энергия, почва и др.) компонентов, объединенных обменом вещества и энергии в единый природный комплекс. Термин предложен В.Н. Сукачевым. Совокупность биогеоценозов образует биогеоценотический noipoe земли, т.е. всю биосферу, а отдельный биогеоценоз представляет собой ее элементарную единицу.[ ...]

Все экологические факторы в общем случае могут быть разделены на две крупные категории: абиотические (или абиогенные) -факторы неживой или косной природы: климатические, космические, почвенные; биотические (или биогенные) - факторы живой природы. К абиотическим компонентам относятся вещество и энергия, к биотическим - гены, клетки, органы, организмы, популяции, сообщества.[ ...]

Таким образом, В. И. Вернадский подчеркивает планетарный и космический характер биосферы. Важнейшим положением учения о биосфере является то, что атомы из живого вещества переходят в косное вещество биосферы и обратно, т. е. происходит обмен веществ. Этот переход атомов выражается в непрекращаю-щемся никогда дыхании, питании, размножении, причем эти процессы поддерживаются и создаются космической энергией Солнца.[ ...]

В.И.Вернадский назвал биосферой оболочку Земли, в формировании которой живые организмы играли и играют основную роль. Он отмечал, что биосфера состоит из нескольких типов веществ: биогенного, косного, биокосного и живого. Биогенное вещество - геологические породы (уголь, нефть, известняк и др.), созданные деятельностью живых организмов и служащие мощным источником энергии. Косное вещество образовано в ходе процессов без участия живых тел.[ ...]

В.И. Вернадский подчеркивал, что «биосфера - это наружная оболочка Земли, область распространения жизни, включающая в себя все живые организмы, а также всю неживую среду их обитания, при этом между косными природными телами и живыми веществами идет непрерывный материальный и энергетический обмен, выражающийся в движении атомов, вызванном живым веществом. Этот обмен в ходе времени выражается закономерно меняющимся, непрерывно стремящимся к устойчивости равновесием». Далее в основном рассматриваются общие закономерности взаимоотношений природы и человеческого общества.[ ...]

Наряду с динамичностью, биогеоценозам присуща и устойчивость во времени, которая обусловлена тем, что современные природные биогеоценозы - результат длительной и глубокой адаптации живых компонентов друг к другу и к компонентам косной среды. Поэтому биогеоценозы, выведенные из устойчивого состояния той или иной причиной, после ее устранения могут восстанавливаться в форме, близкой к исходной, и вернуться снова к исходным уровням величины ассимиляции трофических уровней экологической пирамиды. Поэтому ввиду того, что ассимиляция является присущим всему, живому процессом, представляющим собой одну из сторон обмена веществ и энергии с образованием сложных веществ, составляющих организмы из более простых, и активно откликается на возмущения нооценозов, то привлечение ее для оценки нарушений, загрязнений, воздействий и преобразований нооценозами экологических систем представляется весьма оправданным подходом.[ ...]

Симметрия в системе наук как учение о геометрических свойствах состояний земных, т. е. геологических пространств, их сложности и неоднородности (§ 125). Логика естествознания. История симметрии: бытовое понимание и развитие его в науке. Разная симметрия живых веществ и природных косных тел (§ 126). Кристаллические пространства и федоровские группы (§ 127). Реальный и идеальный монокристалл. Проявления времени. Идеальные и реальные кристаллические пространства (§ 128). Диссимметрия Кюри и Пастера и состояния пространства (§ 129).[ ...]

Биосферой (греч. bios-жизнь, sphaira-шар) называют ту часть земного шара, в пределах которой существует жизнь, представляющую собой оболочку Земли, состоящую из атмосферы, гидросферы и верхней части литосферы, которые взаимно связаны сложными биохимическими циклами миграции вещества и энергии. Верхний предел жизни биосферы ограничен интенсивной концентрацией ультрафиолетовых лучей; нижний - высокой температурой земных недр (свыше 100° С). Крайних пределов ее достигают только низшие организмы - бактерии. В. И. Вернадский, создатель современного учения о биосфере, подчеркивал, что биосфера включает в себя собственно "живую пленку" Земли (сумму населяющих Землю в каждый данный момент живых организмов, "живое вещество" планеты) и область "былых сфер", очерченную распределением на Земле биогенных осадочных пород. Таким образом, биосфера - это специфическим образом организованное единство всего живого и минеральных элементов. Взаимодействие между ними проявляется в потоках энергии и вещества за счет энергии солнечного излучения. Биосфера является самой крупной (глобальной) экосистемой Земли - областью системного взаимодействия живого и косного вещества на планете. По определению В. И. Вернадского, "пределы биосферы обусловлены прежде всего полем существования жизни".[ ...]

В.И. Вернадский. По его определению, биосфера - наружная оболочка (сфера) Земли, область распространения жизни (bios -жизнь). По последним данным, толщина биосферы 40...50 км. Она включает нижнюю часть атмосферы (до высоты 25...30 км, т.е. до озонового слоя), практически всю гидросферу (реки, моря и океаны) и верхнюю часть земной коры - литосферу (до глубины 3 км). Важнейшими компонентами биосферы являются: живое вещество (растения, животные и микроорганизмы); биогенное вещество (органические и органоминеральные продукты, созданные живыми организмами на протяжении геологической истории, -каменный уголь, нефть, торф и др.); косное вещество (горные породы неорганического происхождения и вода); биокосное вещество (продукт синтеза живого и неживого, т.е. осадочные породы, почвы, илы). Вернадский доказал, что все три оболочки Земли связаны с живым веществом, которое оказывает непрерывное воздействие на неживую природу.

В первую очередь наши кости состоят из костного вещества, которое содержит соли кальция. В целом кость как орган состоит ещё из таких мягких тканей как суставные хрящи и надкостница (на языке специалистов периост), костного мозга внутри костей, а также кровеносных сосудов и нервов, которые проходят через надкостницу и ‎ .

Костное вещество

Костное вещество составляет основную массу наших костей. Оно очень прочное, так как содержит кальций (специалисты говорят о солях кальция), его вес может доходить до 70% веса костей. Костное вещество бывает в костях в основном в двух формах: компактное костное вещество и губчатое костное вещество .

Компактное костное вещество – это твёрдая, плотная беловатая масса. В первую очередь она как бы окутывает (покрывает) толстым слоем костномозговые полости внутри длинных трубчатых костей (например, бедренных костей или плечевых костей). Зато губчатое костное вещество состоит из достаточно тонких пластинок/перекладинок. Его можно найти в наших коротких, плоских костях, например, в позвонках.

Костное вещество состоит из зрелых костных клеток, они называются остеоциты. У остеоцитов есть отростки и с помошью этих отростков они соединяются между собой. Работая вместе с молодыми клетками остеобластами, которые отвечают за формирование костей, начинает расти новая кость. А разрушается костная ткань с помощью клеток, которые называются остеокласты.

Суставные хрящи

Суставные хрящи есть практически во всех костях, за исключением костей черепа. Они покрывают суставные поверхности и являются последней оставшейся частью скелета из эмбрионального (зародышевого, ‎ ) развития.

Надкостница

Надкостница (которую специалисты называют периостом) покрывает снаружи все наши кости. Поэтому нигде не видно самого костного вещества. Его покрывает либо надкостница, либо суставной хрящ.

Костный мозг

Костный мозг – это мягкая масса, которая находится в полостях внутри костей. Костный мозг бывает красным и жёлтым. Красный костный мозг отвечает в организме за кроветворение. А жёлтый костный мозг – это в основном жировая ткань.

Жёлтый костный мозг появляется у человека не сразу, а постепенно в ходе развития человека красный костный мозг заменяется на жёлтый. Поэтому чем старше становится человек, тем больше у него становится жёлтого костного мозга. У взрослых жёлтый костный мозг заполняет центральную часть длинных трубчатых костей (это могуть быть, например, плечевые кости), которую специалисты называют диафизом. Красный костный мозг находится в основном внутри коротких и плоских костей (например, внутри позвонков).

Кровеносные сосуды и нервы

Кровеносные сосуды и нервы находятся и в костном веществе, и в надкостнице, и в костном мозге. Они передают костным клеткам информацию, питательные вещества и кислород. Через мельчайшие отверстия на поверхности костей они попадают внутрь кости, а из кости выходят в систему кровообращения или соответственно в нервы, которые их соединяют с нервной системой.

Кость, os, ossis, как орган живого организма состоит из нескольких тканей, главнейшей из которых является костная.

Химический состав кости и ее физические свойства .

Костное вещество состоит из двоякого рода химических веществ: органических (Уз), главным образом оссеина, и неорганических (2/з), главным образом солей кальция, особенно фосфорнокислой извести (более половины - 51,04 %). Если кость подвергнуть действию раствора кислот (соляной, азотной и др.), то соли извести растворяются (decalcinatio), а органическое вещество остается и сохраняет форму кости, будучи, однако, мягким и эластичным. Если же кость подвергнуть обжиганию, то органическое вещество сгорает, а неорганическое остается, также сохраняя форму кости и ее твердость, но будучи при этом весьма хрупким. Следовательно, эластичность кости зависит от оссеина, а твердость ее - от минеральных солей. Сочетание неорганических и органических веществ в живой кости и придает ей необычайные крепость и упругость. В этом убеждают и возрастные изменения кости. У маленьких детей, у которых оссеина сравнительно больше, кости отличаются большой гибкостью и потому редко ломаются. Наоборот, в старости, когда соотношение органических и неорганических веществ изменяется в пользу последних, кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Строение кости.

Структурной единицей кости, видимой в лупу или при малом увеличении микроскопа, является остеон , т. е. система костных пластинок, концентрически расположенных вокруг центрального канала, содержащего сосуды и нервы.

Остеоны не прилегают друг к другу вплотную, а промежутки между ними заполнены интерстициальными костными пластинками. Остеоны располагаются не беспорядочно, а соответственно функциональной нагрузке на кость: в трубчатых костях параллельно длиннику кости, в губчатых - перпендикулярно вертикальной оси, в плоских костях черепа - параллельно поверхности кости и радиально.

Вместе с интерстициальными пластинками остеоны образуют основной средний слой костного вещества, покрытый изнутри (со стороны эндоста) внутренним слоем костных пластинок, а снаружи (со стороны периоста) - наружным слоем окружающих пластинок. Последний пронизан кровеносными сосудами, идущими из надкостницы в костное вещество в особых прободающих каналах. Начало этих каналов видно на мацерирован-ной кости в виде многочисленных питательных отверстий (foramina nut-rfcia). Проходящие в каналах кровеносные сосуды обеспечивают обмен веществ в кости. Из остеонов состоят более крупные элементы кости, видимые уже невооруженным глазом на распиле или на рентгенограмме, - перекладины костного вещества, или трабекулы . Из этих трабекул складывается двоякого рода костное вещество: если трабекулы лежат плотно, то получается плотное компактное вещество , substantia compacta. Если трабекулы лежат рыхло, образуя между собою костные ячейки наподобие губки, то получается губчатое, трабекулярное вещество , substantia spongiosa, trabecularis (spongia, греч. - губка).

Распределение компактного и губчатого вещества зависит от функциональных условий кости. Компактное вещество находится в тех костях и в тех частях их, которые выполняют преимущественно функцию опоры (стойки) и движения (рычаги), например в диафизах трубчатых костей.

В местах, где при большом объеме требуется сохранить легкость и вместе с тем прочность, образуется губчатое вещество, например в эпифизах трубчатых костей (рис. 7).

Перекладины губчатого вещества располагаются не беспорядочно, а закономерно, также соответственно функциональным условиям, в которых находится данная кость или ее часть. Поскольку кости испытывают двойное действие - давление и тягу мышц, постольку костные перекладины располагаются по линиям сил сжатия и растяжения. Соответственно разному направлению этих сил различные кости или даже части их имеют разное строение. В покровных костях свода черепа, выполняющих преимущественно функцию защиты, губчатое вещество имеет особый характер, отличающий его от остальных костей, несущих все 3 функции скелета. Это губчатое вещество называется диплоэ, diploe (двойной), так как оно состоит из неправильной формы костных ячеек, расположенных между двумя костными пластинками - наружной, lamina externa, и внутренней, lamina interna. Последнюю называют также стекловидной, lamina vftrea, так как она ломается при повреждениях черепа легче, чем наружная.

Костные ячейки содержат костный мозг - орган кроветворения и биологической защиты организма . Он участвует также в питании, развитии и росте кости. В трубчатых костях костный мозг находится также в канале этих костей, называемом поэтому костномозговой полостью, cavitas medullaris.

Таким образом, все внутренние пространства кости заполняются костным мозгом, составляющим неотъемлемую часть кости как органа.

Костный мозг бывает двух родов: красный и желтый .

Красный костный мозг , medulla ossium rubra (детали строения см. в курсе гистологии), имеет вид нежной красной массы, состоящей из ретикулярной ткани, в петлях которой находятся клеточные элементы, имеющие непосредственное отношение к кроветворению (стволовые клетки) и костеобразованию (костесозидатели - остеобласты и костеразрушители - остеокласты). Он пронизан нервами и кровеносными сосудами, питающими, кроме костного мозга, внутренние слои кости. Кровеносные сосуды и кровяные элементы и придают костному мозгу красный цвет.

Желтый костный мозг , medulla ossium flava, обязан своим цветом жировым клеткам, из которых он главным образом и состоит.

В периоде развития и роста организма, когда требуются большая кроветворная и костеобразующая функции, преобладает красный костный мозг (у плодов и новорожденных имеется только красный мозг). По мере роста ребенка красный мозг постепенно замещается желтым, который у взрослых полностью заполняет костномозговую полость трубчатых костей.

Снаружи кость, за исключением суставных поверхностей, покрыта надкостницей, periosteum (периост).

Надкостница - это тонкая, крепкая соединительнотканная пленка бледно-розового цвета, окружающая кость снаружи и прикрепленная к ней с помощью соединительнотканных пучков - прободающих волокон, проникающих в кость через особые канальцы. Она состоит из двух слоев: наружного волокнистого (фиброзного) и внутреннего костеобразующего (остеогенного, или камбиального). Она богата нервами и сосудами, благодаря чему участвует в питании и росте кости в толщину. Питание осуществляется за счет кровеносных сосудов, проникающих в большом числе из надкостницы в наружное компактное вещество кости через многочисленные питательные отверстия (foramina nutricia), а рост кости осуществляется за счет остеобластов, расположенных во внутреннем, прилегающем к кости слое (камбиальном). Суставные поверхности кости, свободные от надкостницы, покрывает суставной хрящ, cartilage articularis.

Таким образом, в понятие кости как органа входят костная ткань, образующая главную массу кости, а также костный мозг, надкостница, суставной хрящ и многочисленные нервы и сосуды.

Контрольные вопросы к лекции :

1. Понятие о костном (твердом) и соединительнотканном скелете,

2. Общий обзор скелета человека, классификация костей.

3. Строение кости как органа, надкостница, костный мозг.

4. Структура остеона: гаверсовы каналы, костные пластинки; костные клетки - остеобласты, остеоциты, остеокласты.

5. Строение кости; диафиз, метафиз, эпифиз, апофиз, компактное и губчатое вещество.

6. Химический состав кости.

Лекция № 5

Кость в рентгеновском изображении. Влияние труда и спорта на строение костей живого человека. Взаимоотношение социального и биологического факторов в строении костей.

Цель лекции . Рассмотреть строение кости в целостном организме.

план лекции:

1. Рассмотреть рентгеноанатомию костей.

2. Рассмотреть зависимость развития кости от внутренних и внешних факторов.

3. Раскрыть структурно-функциональные взаимоотношения активной и пассивной частей опорно-двигательного аппарата.

4. Раскрыть роль русского ученого П.Ф. Лесгафта в изучении взаимозависимости мышечной и костной систем.

5. Рассмотреть взаимоотношения социального и биологического факторов в формировании скелета человека.

РЕНТГЕНОАНАТОМИЯ КОСТЕЙ.

На рентгенограммах ясно различимы компактное и губчатое вещество. Первое дает интенсивную контрастную тень, соответственно плоскости кортикального слоя, а в области substantia spongiosa тень имеет сетевидный характер (см. рис.1).

Компактное вещество эпифизов трубчатых костей и компактное вещество костей, построенных преимущественно из губчатого вещества (кости запястья, предплюсны, позвонки), имеет вид тонкого слоя, окаймляющего губчатое вещество. Этот тонкий кортикальный слой на сустав­ных впадинах представляется более толстым, чем на суставных головках.

В диафизах трубчатых костей компактное вещество различно по толщине: в средней части оно толще, по направлению к концам суживается. При этом между двумя тенями кортикального слоя заметна костномозговая полость в виде некоторого просветления на фоне общей тени кости. Если названная полость прослеживается не на всем протяжении, это говорит о наличии патологического процесса.

Рентгенологические контуры компактного вещества диафизов четкие и гладкие. В местах прикрепления связок и мышц контуры кости неров­ные. На фоне кортикального слоя диафизов замечаются тонкие полосы просветления, соответствующие сосудистым каналам. Они располагаются обычно косо: в длинных трубчатых костях верхней конечности - ближе и по направлению к локтевому суставу; в длинных трубчатых костях ниж­ней конечности - дальше и по направлению от коленного сустава; в коротких трубчатых костях кисти и стопы - ближе и по направлению к концу, не имеющему истинного эпифиза.

Губчатое вещество на рентгенограмме имеет вид петлистой сети, состоя­щей из костных перекладин с просветлениями между ними. Характер этой сети зависит от расположения костных пластинок в данном участке соответственно линиям сжатия и растяжения.

Развитие кости . Рентгенологическое исследование костной системы становится возможным со 2-го месяца утробной жизни, когда на почве хряща или соединительной ткани возникают точки окостенения.

Появление точек окостенения легко определяется на рентгенограммах, причем эти точки, отделенные хрящевой тканью, выглядят как отдельные костные фрагменты. Они могут дать повод для ошибочных диагнозов перелома, надлома или некроза (омертвения) кости. В силу этого знание расположения костных ядер, сроков и порядка их появления в практическом отношении является крайне важным.

Поэтому окостенение излагается нами во всех соответствующих местах на основании данных не анатомического исследования трупов, а рентгено-анатомии (исследование живого человека).

В случаях неслияния добавочных ядер с основной частью кости они могут сохраниться на всю жизнь в виде самостоятельных, непостоянных или добавочных костей. Обнаружение их на рентгенограмме может стать поводом для диагностических ошибок.

Все основные ядра окостенения появляются в костях скелета до начала полового созревания, называемого пубертатным периодом. С наступлением пубертатного периода начинается сращение эпифизов с метафизами, т. е. превращение синхондроза, соединяющего костный эпифиз с костным метафизом, в синостоз. Это рентгенологически выражается в постепенном исчез­новении просветления на месте метаэпифизарной зоны, соответствующей метаэпифизарному хрящу, отделяющему эпифиз от метафиза. По наступлении полного синостоза следов бывшего синхондроза определить не удается (рис. 1).

Старение костной системы . В старости костная система претерпевает значительные изменения. С одной стороны, наблюдается уменьшение числа костных пластинок и разрежение кости (остеопороз); с другой - происходит избыточное образование кости в виде костных наростов (о с т е ф и т о в) и обызвествление суставного хряща, связок и сухожилий на месте прикрепления их к кости.

Соответственно этому рентгеновская картина старения костносуставного аппарата слагается из следующих изменений, которые не следует трактовать как симптомы патологии (дегенерации).

I. Изменения, обусловленные атрофией костного вещества:

1) остеопороз (на рентгенограмме кость становится более прозрачной);

2) дефор­мация суставных головок (исчезновение округлой формы их, «стачивание» краев, появление «углов»).

II. Изменения, обусловленные избыточным отложением извести в прилегающих к кости соединительнотканных и хрящевых образованиях:

1) сужение суставной «рентгеновской» щели вследствие обызвествления суставного хряща;

2) усиление рельефа диафиза вследствие обызвествления на месте прикрепления сухожилий и их фиброзных влагалищ;

3) костные наросты - остеофиты , образующиеся вследствие обызвествления свя­зок на месте прикрепления их к кости.

Описанные изменения особенно хорошо прослеживаются в позвоночнике и кисти. В остальных отделах скелета наблюдаются три основных рентгенологических симптома старения: остеопороз, усиление рельефа кости и сужение суставных щелей. У одних людей эти признаки старения заме­чаются рано (30-40 лет), у других - поздно (60-70 лет) или не насту­пают совсем.

Подводя итоги изложению общих данных об онтогенезе костной системы, можно сказать, что рентгенологическое исследование позволяет точнее и глубже изучать развитие скелета в его функционирующем состоянии, чем исследование только трупного материала.

При этом отмечается ряд нормальных морфологических изменений:

1) появление точек окостенения - основных и добавочных;

2) процесс синостозирования их друг с другом;

3) старческая инволюция кости.

Описанные изменения есть нормальные проявления возрастной изменчивости костной системы. Следовательно, понятие «норма» нельзя огра­ничивать только взрослым человеком и рассматривать его как некий единый тип. Это понятие необходимо распространить и на все другие возрасты.

ЗАВИСИМОСТЬ РАЗВИТИЯ КОСТИ ОТ ВНУТРЕННИХ И ВНЕШНИХ ФАКТОРОВ

Скелет, как и всякая система органов, является частью организма, на которой отра­жаются различные процессы, совершающиеся в нем. Поэтому на развитие костной системы влияет много факторов.

Влияние внутренних факторов . Рентгенологическое исследование выявляет ряд морфо­логических изменений костей, зависящих от деятельности других органов. Особенно ясно при рентгенографии определяется связь между костной системой ижелезами внутренней секреции . Активное включение половых желез влечет за собой начало полового созревания, пубертатный период . Перед этим, в предпубертатный период, усиливается деятельность других желез внутренней секреции, придатка мозга - гипофиза, с функцией которого свя­зано появление ядер окостенения. К началу предпубертатного периода появляются все основные точки окостенения, причем отмечается половое различие в сроках их появления: у девочек на 1-4 года раньше, чем у мальчиков. Наступление предпубертатного периода, связанного с функцией гипофиза, совпадает с появлением ядра окостенения в гороховидной кости, относящейся к категории сесамовидных костей.

Накануне пубертатного периода окостеневают и другие сесамовидные кости, а именно - у пястно-фалангового сочленения I пальца. Начало пубертатного периода, когда, по выраже­нию известного исследователя эндокринного аппарата Бидля, «половые железы начинают играть главную мелодию в эндокринном концерте», проявляется в костной системе наступлением синостозов между эпифизами и метафизами, причем самый первый такой синостоз наблюдается в I пястной кости. Поэтому на основании сопоставления его с другими данными о половом развитии (появление терминальной растительности, наступление менструаций и т. п.) синостоз 1 пястной кости считается показателем начинающегося полового созре­вания, т. е. показателем начала пубертатного периода; у петербургских жи­телей синостоз I пястной кости наступает в возрасте 15-19 лет у юношей и в 13-18 лет у девушек.

Полная половая зрелость , также получает известное отражение в скелете: в это время заканчиваются синостозы эпифизов с метафизами во всех трубчатых костях, что наблюдается у женщин в возрасте 17-21 года, а у мужчин - в 19-23 года. Так как с окончанием процесса синостозирования заканчивается pост костей в длину, становится понятным, почему мужчины, у которых половое созревание заканчивается позже чем, у женщин, в массе имеют более высокий рост, нежели женщины.

Учитывая эту связь костной системы с эндокринной и сопоставляя данные о возрастных особенностях скелета с данными о половом созревании и общем развитии организма, можно говорить о так называемом «костном возрасте». Благодаря этому по рентгеновской картине некоторых отделов скелета, особенно кисти, можно определить возраст данного индивидуума или судить о правильности у него процесса окостенения, что имеет практическое значение для диагностики, судебной медицины и пр. При этом, если «паспортный» возраст указывает на число прожитых лет (т. е. на количественную сторону), то «костный» возраст до извест­ной степени свидетельствует о качественной их стороне.

При рентгенологическом исследовании выявляется также зависимость строения кости от состояния нервной системы , которая, регулируя все процессы в организме, осуще­ствляет, в частности, трофическую функцию кости. При усиленной трофической функции нервной системы в кости откладывается больше костной ткани, и она становится более плот­ной, компактной (остеосклероз). Наоборот, при ослаблении трофики наблюдается разрежение кости - остеопороз. Нервная система оказывает также влияние на кость через мускулатуру, сокращением которой она управляет (о чем будет сказано ниже). Наконец различные части центральной и периферической нервной системы обусловливают форму окружающих и прилегающих костей. Так, все позвонки образуют позвоночный канал вокруг спинного мозга. Кости черепа образуют костную коробку вокруг головного мозга и приобре­тают форму последнего. Вообще костная ткань развивается вокруг элементов периферической нервной системы, в результате чего возникают костные каналы, борозды и ямки, слу­жащие для прохождения нервов и других нервных образований (узлов).

Развитие кости находится также в весьма тесной зависимости от кровеносной системы. Весь процесс окостенения от момента появления первого костного ядра до окончания синостозирования проходит при непосредствен­ном участии сосудов, которые, проникая в хрящ, способствуют его разру­шению и замещению костной тканью. При этом костные пластинки (гаверсовы) откладываются в определенном порядке вокруг кровеносных сосудов, образуя гаверсовы системы с центральным каналом для соответственного сосуда. Следовательно, кость при своем возникновении строится вокруг сосудов. Этим же объясняется образование сосудистых каналов и борозд в костях на местах прохождения и прилегания к ним артерий и вен.

Окостенение и рост кости после рождения также протекает в тесной зависимости от кровоснабжения . Можно наметить ряд этапов возрастной изменчивости, кости, связан­ной с соответствующими изменениями кровеносного русла (рис. 2).

1. Неонатальный этап , свойственный плоду (последние месяцы внутриутробного развития) и новорожденному; сосудистое русло кости разделено на ряд сосудистых районов (эпифиз, диафиз, метафиз, апофиз), которые между собой не сообщаются (замкнутость, изолированность) и в пределах которых сосуды не соединяются друг с другом, не анастомозируют (концевой характер сосудов, «конечность»).

2. Инфантильный этап , свойственный детям до начала наступления синостозов; сосудистые районы еще разобщены, но в пределах каждого из них сосуды анастомозируют друг с другом и концевой характер их исчезает («замкнутость» при отсутствии «конечности»).

3. Ювенильный этап , свойственный юношам, начинается установлением связей между сосудами эпифиза и метафиза через метаэпифизарный хрящ, в силу чего начинает исчезать и замкнутость эпифизарных. метафизарных и диафизарных сосудов.

4. Зрелый этап , свойственный взрослым; наступают синостозы, и все внутрикостные сосуды составляют единую систему: они не «замкнуты» и не «конечны».

5. Сенильный этап , свойственный старикам; сосуды становятся тоньше и вся сосудистая сеть беднее.

На форму и положение костей влияют к внутренности , для которых они образуют костные вместилища, ложа, ямки и т. п.

Формирование скелета и органов относится к началу эмбриональной жизни; при своем развитии они оказывают влияние друг на друга, почему и получается соответствие органов и их костных вместилищ, например грудной клетки и легких, таза и его органов, черепа и мозга и т. п.

В свете этих взаимоотношений нужно рассматривать развитие всего скелета.

Влияние внешних (социальных) факторов на строение и развитие скелета. Единство формы и функции в строении ко­стей. Воздействуя на природу в процессе трудовой деятельности, чело­век приводит в движение свои естественные орудия - руки, ноги, пальцы и пр. В орудиях же труда он приобретает новые искусственные органы, которые дополняют и удлиняют естественные органы тела, изменяя их строение. И сам человек «...в то же время изменяет свою собственную

природу». Следовательно, трудовые процессы оказывают значительные влияния на тело человека в целом, на его аппарат движения, включая и костную систему.

Особенно ярко отражается на скелете работа мышц . Как пока­зали экспериментальные исследования П. Ф. Лесгафта, чем силь­нее работа мышц, тем лучше раз­вивается кость, и обратно. В местах прикрепления сухожилий образуются выступы (бугры, отростки,

шероховатости), а на местах

Рис. 3. Рентгенограммы плюсневых костей.

места прикрепления мышц балерины (а) и работников сидячего труда (б).

прикрепления мышечных пучков - ровные или вогнутые поверхности (ямки).

ВЗАИМООТНОШЕНИЯ АКТИВНОЙ И ПАССИВНОЙ ЧАСТЕЙ ОПОРНО-ДВИГАТЕЛЬНОГО АППАРАТА

Чем сильнее развита муску­латура, тем лучше выражены на костях места прикрепления мышц. Вот почему рельеф кости, обуслов­ленный прикреплением мускула­туры, у взрослого выражен сильнее, чем у ребенка, у мужчин - силь­нее, чем у женщин.

Длительные и систематические сокращения мускулатуры, как это имеет место при физических упражнениях и профессиональной работе, постепенно вызывают через рефлекторные механизмы нервной системы изменение обмена веществ в кости, в результате чего получается увеличе­ние костного вещества, названное рабочей гипертрофией (рис. 3). Эта рабочая гипертрофия обусловливает изменения величины, формы и строения костей, легко определяемые рентгенологически на живых людях.

Различные профессии требуют различной физической работы, с чем связана разная степень участия тех или иных костей в данной работе.

Усиление физической нагрузки на аппарат движения вызывает рабочую гипертрофию костей, в результате чего меняются их форма, ширина и длина, а также толщина компактного вещества и размеры костномозгового пространства; меняется и структура губчатого ве­щества.

Ширина костей. Так, у грузчиков ширина костей по мере увеличения профессиональ­ного стажа достигает значительно больших размеров, нежели у представителей офисного труда.

Исследования П.Ф. Лесгафта выявили целый ряд закономерностей взаимоотношения активной и пассивной частей опорно-двигательного аппарата. Им было установлено:

1. Кости развиваются тем сильнее, чем больше деятельность окружающих их мышц; при меньшей нагрузке органов они становятся тоньше, длиннее, уже и слабее.

2. Форма костей меняется в зависимости от давления окружающих органов (мышц, кожи, глаз, зубов и т.д.), они утолщаются и направляются в сторону наименьшего сопротивления.

3. Форма кости изменяется также и от давления наружных частей, кость растет медленнее со стороны увеличенного внешнего давления, искривляясь под влиянием одностороннего действия.

4. Фасции – тонкие оболочки, покрывающие и разделяющие мышцы и находящиеся под их непосредственным влиянием, оказывают также боковое давление на кости.

5. Кости активны по отношению к форме своего строения (архитектуре), исполняют роль стоек или опор для окружающих органов.

ВЗАИМООТНОШЕНИЕ СОЦИАЛЬНОГО И БИОЛОГИЧЕСКОГО В СТРОЕНИИ КОСТЕЙ

Кость не является застывшей моделью, не меняющейся после своего сформирования, как считалось раньше. Такой метафизический взгляд преодолен современной анатомией, которая рассматривает жизнедеятельность кости даже у взрослого человека как непрекра­щающийся обмен веществ с другими тканями организма, как диалектическое единство и борьбу двух противоположных процессов - костеобразовательного и костеразрушительного (резорбционного; resorptio - рассасывание). В результате этой борьбы происходит постоянная смена структур кости и ее химического состава; так что, например, бедренная кость в течение 50 дней полностью обновляется. При этом кость подчиняется ряду биологи­ческих законов: приспособление (адаптация) к новым жизненным условиям, единство ор­ганизма и среды, единство формы и функции, изменчивость в результате упражнения или неупражнения, действие механического сдавления одной части на другую и пр. Морфологическим выражением этих законов применительно к скелету является пере­стройка структуры костей (костная перестройка) соответственно меняющимся функциональ­ным потребностям, о чем уже говорилось выше.

Такова вкратце «биологическая сторона» взаимоотношения социального и биологи­ческого. Что касается «социальной стороны», то здесь необходимо иметь в виду следую­щее.

Различные социальные факторы (профессия, образ жизни, характер питания и пр.) связаны с различной физической нагрузкой, от чего зависит разная степень участия тех или иных костей в данной работе. Труд работника-профессионала обусловливает длитель­ное пребывание тела в том или ином положении (например, согнутое положение над станком или письменным столом) или постоянное изменение положения тела в том или ином направ­лении (например, сгибание торса вперед и отбрасывание его назад у плотников). Поэтому характер профессиональной нагрузки и ее объем определяют большее или меньшее участие в работе данного отдела скелета и каждой кости в отдельности и обусловливают разный ха­рактер и степень перестройки ее структуры. При смене профессии наблюдается костная перестройка в сторону усиления или ослабления рабочей гипертрофии в зависимости от ха­рактера профессиональной нагрузки. Рост костей в длину усиливается при благоприятной физической нагрузке.

Старение костей наступает позже у рабочих, имеющих правильно организованный многолетний физический труд, который не вызывает преждевременной изнашиваемости костной ткани.

Изложенные факты индивидуальной изменчивости костной системы обусловлены как биологическими, так и социальными факторами. Раздражители внешней среды воспри­нимаются организмом биологически и приводят к перестройке скелета. Способность кост­ной ткани приспосабливаться к меняющимся функциональным потребностям путем кост­ной перестройки есть биологическая причина изменчивости костей, а характер профессии, объем профессиональной нагрузки, интенсивность труда, образ жизни данного человека и другие социальные моменты есть социальные причины этой изменчивости.

Таково взаимоотношение социального и биологического в строении скелета. Зная это взаимоотношение, можно направленно воздействовать на строение костной системы путем подбора соответствующих физических упражнений в труде и спорте и путем изменений со­циальных условий жизни.

Контрольные вопросы к лекции :

1. Рентгеноанатомия костей.

2. Зависимость развития кости от внутренних и внешних факторов.

3. Структурно-функциональные взаимоотношения активной и пассивной частей опорно-двигательного аппарата.

4. Роль русского ученого П.Ф. Лесгафта в изучении взаимозависимости мышечной и костной систем.

5. Взаимоотношения социального и биологического факторов в формировании скелета человека.

Лекция № 6

Общая артросиндесмология.

Цель лекции. Рассмотреть функциональные, анатомические особенности различных видов соединения костей.

план лекции:

1. Рассмотреть развитие соединений костей в филогенезе.

2. Рассмотреть классификацию соединения костей.

3. Раскрыть функциональную анатомию синдесмозов.

4. Раскрыть функциональную анатомию синхродрозов, синостозов, полусуставов.

5. Рассмотреть классификацию суставов по количеству суставных поверхностей и форме суставных поверхностей.

6. Рассмотреть классификацию суставов по количеству осей движения.

7. Рассмотреть общую характеристику комбинированных суставов и комплексных суставов.

8. Рассмотреть строение главных и вспомогательных элементов суставов.

9. Раскрыть основные закономерности биомеханики суставов.

10.Раскрыть функционально-морфологические особенности позвоночного столба как целого.

11.Раскрыть функционально-морфологические особенности таза как целого.

12. Раскрыть функционально-морфологические особенности стопы как целого.

РАЗВИТИЕ СОЕДИНЕНИЙ КОСТЕЙ В ФИЛОГЕНЕЗЕ

Первоначальной формой соединения костей является сращение их при помощи соединительной или (позднее) хрящевой ткани. Однако такой сплошной способ соединения костей ограничивает объем движений. С образованием костных рычагов движения в промежуточной между костями ткани вследствие рассасывания последней появляются щели и полости, в результате чего возник новый вид соединения костей - прерывный, сочленение. Кости стали не только соединяться, но и сочленяться, образовались суставы, позволившие костным рычагам производить обширные движения. Таким образом, в процессе филогенеза развилось 2 вида соединения костей: первоначальный – непрерывный, сплошной с ограниченным размахом движений и более поздний - прерывный, позволивший производить обширные движения. Отражая этот филогенетический процесс в эмбриогенезе человека развитие соединений костей проходит эти 2 стадии. Вначале зачатки скелета непрерывно связаны между собой прослойками мезенхимы. Последняя превращается в соединительную ткань, из которой образуется аппарат, связывающий кости. Если участки соединительной ткани, расположенные между костями, окажутся сплошными, то получится сплошное непрерывное соединение костей - сращение, иди синартроз. Если внутри них путем рассасывания соединительной ткани образуется полость, то возникает другой вид соединения - полостной, или прерывный, - диартроз.

Таким образом, по развитию, строению и функции все соединения костей можно разделить на 2 большие группы:
1. Непрерывные соединения - синартрозы (BNA) - более ранние по развитию, неподвижные или малоподвижные по функции.
2. Прерывные соединения - диартрозы (BNA) - более поздние по развитию и более подвижные по функции.

Между этими формами существует переходная - от непрерывных к прерывным или обратно. Она характеризуется наличием небольшой щели, не имеющей строения настоящей суставной полости, вследствие чего такую форму называютполусуставом - симфиз , symphysis (BNA).