Формула давления воздуха, пара, жидкости или твердого тела. Как находить давление (формула)? Указания к решению задач. при решении задач на тему гидростатического давления необходимо различать и не

ЗАДАНИЯ

К выполнению расчетно – графической работы

По дисциплине «Гидравлика»

Тема: гидростатика

Северодвинск


ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Гидравлика, или техническая механика жидкостей- это наука о законах равновесия и движения жидкостей, о способах применения этих законов к решению практических задач;

Жидкостью называют вещество, находящееся в таком агрегатном состоянии, которое сочетает в себе черты твердого состояния (весьма малая сжимаемость) и газообразного (текучесть). Законы равновесия и движения капельных жид­костей в известных пределах можно применять и к газам.

На жидкость могут действовать силы, распределенные по ее массе (объему), называемые массовыми , и по поверхности, называемые поверхностными . К первым относятся силы тя­жести и инерции, ко вторым - силы давления и трения.

Давлением называется отношение силы, нормальной к по­верхности, к площади. При равномерном распределении

Касательным напряжением называется отношение силы трения, касательной к поверхности, к площади:

Если давление р отсчитывают от абсолютного нуля, то его называют абсолютным (р абс), а если от условного нуля (т. е. сравнивают с атмосферным давлением р а, то избыточным (р изб):

Если Р абс < Р а, то имеется вакуум, величина которого:

Р вак = Р а - Р абс

Основной физической характеристикой жидкости является плотность ρ (кг/м 3), определяемая для однородной жидкости отношением ее массы m к объему V:

Плотность пресной воды при температуре Т = 4°С ρ = = 1000 кг/м 3 . В гидравлике часто пользуются также понятием удельного веса γ (Н/м 3), т.е весом G единицы объема жидкости:

Плотность и удельный вес связаны между собой соотношением:

где g - ускорение свободного падения.

Для пресной воды γ вод = 9810 Н/м 3

Важнейшие физические параметры жидкостей, которые используются в гидравлических расчетах,- сжимаемость, температурное расширение, вязкость и испаряемость.



Сжимаемость жидкостей характеризуется модулем объемной упругости К, входящим в обобщенный закон Гука:

где ΔV - приращение (в данном случае уменьшение) объема жидкости V, обусловленное увеличением давления на Δр. Например, для воды К вод ≈2 . 10 3 МПа.

Температурное расширение определяется соответствующим коэффициентом, равным относительному изменению объема, при изменении температуры на 1 °С:

Вязкость - это способность жидкости сопротивляться сдвигу. Различают динамическую (μ) и кинематическую (ν) вязкости. Первая входит в закон жидкостного трения Ньютона, выражающий касательное напряжение τ через поперечный градиент скорости dv/dt:

Кинематическая вязкость связана с динамической соотношением

Единицей кинематической вязкости является м 2 /с.

Испаряемость жидкостей характеризуется давлением насыщенных паров в функции температуры.

Давлением насыщенных паров можно считать то абсолютное давление, при котором жидкость закипает при данной температуре. Следовательно, минимальное абсолютное давление, при котором вещество находится в жидком состоянии, равно давлению насыщенных паров р н.п .

Основные параметры некоторых жидкостей, их единицы в СИ и внесистемные единицы, временно допускаемые к применению, приведены в Приложениях 1...3.


ГИДРОСТАТИКА

Давление в неподвижной жидкости называется гидростатическим и обладает следующими двумя свойствами:

На внешней поверхности жидкости оно всегда направлено во нормали внутрь объема жидкости;

В любой точке внутри жидкости оно по всем направлениям одинаково, т. е. не зависит от угла наклона площадки, по которой действует.

Уравнение, выражающее гидростатическое давление р в любой точке неподвижной жидкости в том случае, когда из числа массовых сил на нее действует лишь одна сила тяжести, называется основным уравнением гидростатики:

где p 0 - давление на какой-либо поверхности уровня жидкости, например на свободной поверхности; h - глубина расположения рассматриваемой точки, отсчитанная от поверхности с давлением р 0 .

В тех случаях, когда рассматриваемая точка расположена выше поверхности с давлением р 0 , второй член в формуле (1.1) отрицателен.

Другая форма записи того же уравнения (1.1) имеет вид

(1.2)

где z и z 0 - вертикальные координаты произвольной точки и свободной поверхности, отсчитываемые от горизонтальной плоскости вверх; p/(pg) - пьезометрическая высота.

Гидростатическое давление может быть условно выражено высотой столба жидкости p/ρg.

В гидротехнической практике внешнее давление часто равноатмосферному: P 0 =Р ат

Величина давления P ат = 1 кГ/см 2 = 9,81 . 10 4 н/м г называетсятехнической атмосферой .

Давление, равное одной технической атмосфере, эквивалентно давлению столба воды высотой 10 метров, т. е.

Гидростатическое давление, определяемое по уравнению (1.1), именуется полным или абсолютным давлением . В дальнейшем будем обозначать это давление р абс или p’. Обычно в гидротехнических расчетах интересуются не полным давлением, а разницей между полным давлением в атмосферным, т. е. так называемым манометрическим давлением

В дальнейшем изложении сохраним обозначение р за манометрическим давлением.

Рисунок 1.1

Сумма членов дает величину полного гидростатического напора

Сумма -- выражает гидростатический напор Н без учета атмосферного давления p ат /ρg, т. е.

На рис. 1.1 плоскость полного гидростатического напора и плоскость гидростатического напора показаны для случая, когда свободная поверхность находится под атмосферным давлением р 0 =p ат.

Графическое изображение величины и направления гидростатического давления, действующего на любую точку поверхности, носит название эпюры гидростатического давления. Для построения эпюры нужно отложить величину гидростатического давления для рассматриваемой точки нормально к поверхности, яа которую оно действует. Так, например, эпюра манометрического давления на плоский наклонный щит АВ (рис. 1.2,а) будет представлять треугольник ABC, а эпюра полного гидростатического давления - трапецию A"B"C"D" (рис. 1.2,б).

Рисунок 1.2

Каждый отрезок эпюры на рис. 1.2,а (например О К) будет изображать манометрическое давление в точке К, т. е. p K = ρgh K , а на рис. 1.2,б - полное гидростатическое давление

Сила давления жидкости на плоскую стенку равна произведению гидростатического давления ρ с в центре тяжести площади стенки на площадь стенки S, т. е.

Центр давления (точка приложения силы F) расположен ниже центра тяжести площади или совпадает с последним в случае горизонтальной стенки.

Расстояние между центром тяжести площади и центром давления в направлении нормали к линии пересечения плоскости стенки со свободной поверхностью жидкости равно

где J 0 - момент инерции площади стенки относительно оси, проходящей через центр тяжести площади и параллельной линии пересечения плоскости стенки со свободной поверхностью: у с - координата центра тяжести площади.

Сила давления жидкости на криволинейную стенку, симметричную относительно вертикальной плоскости, складывается из горизонтальной F Г и вертикальной F B составляющих:

Горизонтальная составляющая F Г равна силе давления жидкости на вертикальную проекцию данной стенки:

Вертикальная составляющая F B равна весу жидкости в объеме V, заключенном между данной стенкой, свободной поверхностью жидкости и вертикальной проекцирующей поверхностью, проведенной по контуру стенки.

Если избыточное давление р 0 на свободной поверхности жидкости отлично от нуля, то при расчете следует эту поверхность мысленно поднять (или опустить) на высоту (пьезометрическую высоту) p 0 /(ρg)

Плавание тел и их остойчивость. Условие плавания тела выражается равенством

G=P (1.6)

где G - вес тела;

Р - результирующая сила давления жидкости на погруженное в нее тело - архимедова сила .

Сила Р может быть найдена по формуле

P=ρgW (1.7)

где ρg - удельный вес жидкости;

W - объем жидкости, вытесненной телом, или водоизмещение.

Сила Р направлена вверх и проходит через центр тяжести водоизмещения.

Осадкой тела у называется глубина погружения наинизшей точки смоченной поверхности (рис. 1.3,а). Под осью плавания понимают линию, проходящую через центр тяжести С и центр водоизмещения D, соответствующий/ нормальному положению тела в состоянии равновесия (рис. 1.3, а)-

Ватерлинией называется линия пересечения поверхности плавающего тела со свободной поверхностью жидкости (рис. 1.3,б). Плоскостью плавания ABEF называется плоскость, полученная от пересечения тела свободной поверхностью жидкости, или, иначе плоскость, ограниченная ватерлинией.

Рисунок 1.3

Кроме выполнения условий плавания (1.5) тело (судно, баржа и т.д.) должно удовлетворять условиям остойчивости. Плавающее тело будет остойчивым в том случае, если при крене сила веса G и архимедова сила Р создают момент, стремящийся уничтожить крен и вернуть тело в исходное положение.

Рисунок 1.4

При надводном плавании тела (рис. 1.4) центр водоизмещения при малых углах крена (α<15°) перемещается по некоторой дуге, проведенной из точки пересечения линии действия силы Р с осью плавания. Эта точка называется метацентром (на рис. 1.4 точка М). Будем в дальнейшем рассматривать условия остойчивости лишь при надводном плавании тела при малых углах крена.

Если центр тяжести тела С лежит ниже центра водоизмещения, то плавание будет безусловно остойчивым (рис. 1.4,а).

Если центр тяжести тела С лежит выше центра водоизмещения D, то плавание будет остойчивым только при выполнении следующего условия (рис. 1-9,б):

где ρ - метацентрический радиус, т. е. расстояние между центром водоизмещения и метацентром

δ - расстояние между центром тяжести тела С и центром во­доизмещения D. Метацентрический радиус ρ находится по формуле:

где J 0 - момент инерции плоскости плавания или площади, ограниченной ватерлинией, относительно продольной оси (рис. 1-8,6);

W - водоизмещение.

Если центр тяжести тела С расположен выше центра водоизмещения и метацентра, то тело неостойчиво; возникающая пара сил G и Р стремится увеличить крен (рис. 1.4,в ).


УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

При решении задач по гидростатике прежде всего нужно хорошо усвоить и не смешивать такие понятия, как давление р и сила F.

При решении задач на определение давления в той или иной точке неподвижной жидкости следует пользоваться основным уравнением гидростатики (1.1). Применяя это уравнение, нужно иметь в виду, что второй член в правой части этого уравнения может быть как положительным, так и отрицательным. Очевидно, что при увеличении глубины давление возрастает, а при подъеме - уменьшается.

Необходимо твердо различать давления абсолютное, избыточное и вакуум и обязательно знать связь между давлением, удельным весом и высотой, соответствующей этому давлению (пьезометрической высотой).

При решении задач, в которых даны поршни или системы поршней, следует писать уравнение равновесия, т. е. равенство нулю суммы всех сил, действующих на поршень (систему поршней).

Решение задач следует проводить в международной системе единиц измерения СИ.

Решение задачи должно сопровождаться необходимыми пояснениями, рисунками (принеобходимости), перечислением исходных величин (графа «дано»), переводом единиц в систему СИ.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО ГИДРОСТАТИКЕ

Задача 1. Определить полное гидростатическое давление на дно сосуда, наполненного водой. Сосуд сверху открыт, давление на свободной поверхности атмосферное. Глубина воды в сосуде h = 0,60 м.

Решение:

В данном случае имеем р 0 =р ат и потому применим формулу (1.1) в виде

р"=9,81.10 4 +9810 . 0,6 = 103986 Па

Ответ р’=103986 Па

Задача 2. Определить высоту столба воды в пьезометре над уровнем жидкости в закрытом сосуде. Вода в сосуде находитcя под абсолютным давлением p" 1 = 1,06ат (рисунок к задаче 2).

Решение .

Составим условия равновесия для общей точки А (см. рисунок). Давление в точке А слева:

Давление справа:

Приравнивая правые части уравнений, и сокращая на γg получаем:

Указанное уравнение можно также получить, составив условие равновесия для точек, расположенных в любой горизонтальной плоскости, например в плоскости ОО (см. рисунок). Примем за начало шкалы отсчета пьезометра плоскость ОО и из полученного уравнения найдем высоту столба воды в пьезометре h.

Высота h равна:

= 0,6 метра

Пьезометр измеряет величину манометрического давления, выраженного высотой столба жидкости.

Ответ: h = 0,6 метра

Задача 3. Определить высоту, на которую поднимается вода в вакуумметре, если абсолютное давление воздуха внутри баллона р’ в =0,95 ат (рис. 1-11). Сформулировать, какое давление измеряет вакуумметр.

Решение :

Составим условие равновесия относительно горизонтальной плоскости О-О:

гидростатическое давление, действующее изнутри:

Гидростатическое давление в плоскости О -О, действующее с внешней стороны,

Так как система находится в равновесии, то


Задача 4. Определить манометрическое давление в точке А трубопровода, если высота столба ртути по пьезометру h 2 =25 см. Центр трубопровода расположен на h 1 =40 см ниже линии раздела между водой и ртутью (рисунок к задаче).

Решение: Находим давление в точке В: р" В =р" А h 1 , так как точка В расположена выше точки А на величину h 1 . В точке С давление будет такое же, как в точке В, так как давление столба воды h взаимно уравновешивается, т. е.



отсюда манометрическое давление:



Подставляя числовые значения, получаем:

р" А -р атм =37278 Па

Ответ: р" А -р атм =37278 Па


ЗАДАЧИ

Задача 1.1. Канистра, заполненная бензином и не содержащая воздуха, нагрелась на солнце до температуры 50 °С. На сколько повысилось бы давление бензина внутри канистры, если бы она была абсолютно жесткой? Начальная температура бензина 20 0 С. Модуль объемной упругости бензина принять равным K=1300 МПа, коэффициент температурного расширения β = 8 . 10 -4 1/град.

Задача 1.2. Определить избыточное давление на дне океана, глубина которого h=10 км, приняв плотность морской воды ρ=1030 кг/м 3 и считая ее несжимаемой. Определить плотность воды на той же глубине с учетом сжимаемости и приняв модуль объемной упругости K = 2 . 10 3 МПа.

Задача 1.3. Найти закон изменения давления р атмосферного воздуха по высоте z, считая зависимость его плотности от давления изотермической. В действительности до высоты z=11 км температура воздуха падает по линейному закону, т. е. T=T 0 -β z , где β = 6,5 град/км. Определить зависимость p = f(z) с учетом действительного изменения температуры воздуха с высотой.

Задача 1.4. Определить избыточное давление воды в трубе В, если показание манометра р м = 0,025 МПа. Соединительная трубка заполнена водой и воздухом, как показано на схеме, причем Н 1 = 0,5 м; Н 2 =3 м.

Как изменится показание манометра, если при том же давлении в трубе всю соединительную трубку заполнить водой (воздух выпустить через кран К)? Высота Н 3 = 5 м.


Задача 1.5. В U-образную трубку налиты вода и бензин. Определить плотность бензина, если h б = 500 мм; h в = = 350 мм. Капиллярный эффект не учитывать.

Задача 1.6. В цилиндрический бак диаметром D = 2 м до уровня Н=1,5 м налиты вода и бензин. Уровень воды в пьезометре ниже уровня бензина на h = 300 мм. Определить веснаходящегося в баке бензина, если ρ б = 700 кг/м 3 .


Задача 1.7. Определить абсолютное давление воздуха всосуде, если показание ртутного прибора h = 368 мм, высота H=1 м. Плотность ртути ρ= 13600 кг/м 3 . Атмосферное давление 736 мм рт. ст.

Задача 1.8. Определить избыточное давление p 0 воздуха в напорном баке по показанию манометра, составленного из двух U-образных трубок с ртутью. Соединительные трубки заполнены водой. Отметки уровней даны в метрах. Какой высоты Н должен быть пьезометр для измерения того же давления p 0 Плотность ртути ρ = 13600 кг/м 3 .


Задача 1.9. Определить силу давления жидкости (воды) на крышку люка диаметром D=l м в следующих двух случаях:

1) показание манометра р м = 0,08 МПа; H 0 =1,5 м;

2) показание ртутного вакуумметра h = 73,5 мм при а= 1м ; ρ рт = 13600 кг/м 3 ; Н 0 =1,5 м.


Задача 1.10. Определить объемный модуль упругости жидкости, если под действием груза А массой 250 кг поршень прошел расстояние Δh = 5 мм. Начальная высота положения поршня (без груза) H =1,5 м, диаметры поршня d = 80 мм н резервуара D = 300 мм, высота резервуара h = 1,3 м. Весом поршня пренебречь. Резервуар считать абсолютно жестким.

Задача 1.11. Для опрессовки водой подземного трубопровода (проверки герметичности) применяется ручной поршневой насос. Определить объем воды (модуль упругости К = 2000 МПа), который нужно накачать в трубопровод для повышения избыточного давления в нем от 0 до 1,0 МПа. Считать трубопровод абсолютно жестким. Размеры трубопровода: длина L = 500 м, диаметр d=100 мм. Чему равно усилие на рукоятке насоса в последний момент опрессовки, если диаметр поршня насоса d n = 40 мм, а соотношение плеч рычажного механизма а/в = 5?


Задача 1.12 . Определить абсолютное давление воздуха в баке р 1 , еcли при атмосферном давлении, соответствующем h а = 760 мм рт. ст., показание ртутного вакуумметра h рт = = 0,2 м, высота h =1,5 м. Каково при этом показание пружинного вакуумметра? Плотность ртути ρ=13600 кг/м 3 .

Задача 1.13 . При перекрытом кране трубопровода К определить абсолютное давление в резервуаре, зарытом на глубине Н=5 м, если показание вакуумметра, установленного на высоте h=1,7 м, равно р вак = 0,02 МПа. Атмосферное давление соответствует р а = 740 мм рт. ст. Плотность бензина ρ б = 700 кг/м 3 .


Задача 1.14. Определить давление р’ 1 , если показание пьезометра h =0,4 м. Чему равно манометрическое давление?

Задача 1.15. Определить вакуум р вак и абсолютное давление внутри баллона р" в (рис. 1-11), если показание вакуумметра h =0,7 м вод. ст.

1) в баллоне и в левой трубке - вода, а в правой трубке - ртуть (ρ=13600 кг/м 3 );

2) в баллоне и левой трубке - воздух , а в правой трубке - вода.

Определить, какой процент составляет давление столба воздуха в трубке от вычисленного во втором случае манометрического давления?

При решении задачи принять h 1 = 70 см,h 2 = = 50 см.

Задача 1.17. Чему будет равна высота ртутного столба h 2 (рис. к задаче 1.16), если манометрическое давление нефти в баллоне А p а = 0,5 ат, а высота столба нефти (ρ=800 кг/м 3) h 1 =55 см?

Задача 1.18. Определить высоту столба ртути h 2 , (рисунок), если расположение центра трубопровода А повысится по сравнению с указанным на рисунке и станет на h 1 = 40 см выше линии раздела между водой и ртутью. Манометрическое давление в трубе принять 37 278 Па.

Задача 1.19. Определить, на какой высоте z установится уровень ртути в пьезометре, если при манометрическом давлении в трубе Р А =39240 Па и показании h=24 см система находится в равновесии (см. рисунок).

Задача 1.20. Определить удельный вес бруса, имеющего сле­дующие размеры: ширину b=30 см , высоту h=20 см и длину l = 100 см , если его осадка y=16 см

Задача 1.21. Кусок гранита весит в воздухе 14,72 Н и 10,01 Н в жидкости, имеющей относительный удельный вес 0,8. Определить объем куска гранита, его плотность и удельный вес.

Задача 1.22 Деревянный брус размером 5,0 х 0,30 м и высотой 0,30м спущен в воду. На какую глубину он погрузится, если от­носительный вес бруса 0,7? Определить, сколько человек могут встать на брус, чтобы верхняя поверхность бруса оказалась бы заподлицо со свободной поверхностью воды, считая, что каждый человек в среднем имеет массу 67,5 кг.

Задача 1.23 Прямоугольная металлическая баржа длиной 60 м, шириной 8 м, высотой 3,5 м, загруженная песком, весит 14126 кН. Определить осадку баржи. Какой объем песка V п нужно выгрузить, чтобы глубина погружения баржи была 1,2 м, если относительный удельный вес влажного песка равен 2,0?

Задача 1.24. Объемное водоизмещение подводной лодки 600 м 3 . С целью погружения лодки отсеки были заполнены морской водой в количестве 80 м 3 . Относительный удельный вес морской воды 1,025. Определить: какая часть объема лодки (в процентах) будет погружена в воду, если из подводной лодки удалить всю воду и она всплывет; чему равен вес подводной лодки без воды?

Давление - это физическая величина, которая играет особую роль в природе и жизни человека. Это незаметное глазу явление не только влияет на состояние окружающей среды, но и очень хорошо ощущается всеми. Давайте разберемся, что это такое, какие виды его существуют и как находить давление (формула) в разных средах.

Что называется давлением в физике и химии

Данным термином именуется важная термодинамическая величина, которая выражается в соотношении перпендикулярно оказываемой силы давления на площадь поверхности, на которую она воздействует. Это явление не зависит от размера системы, в которой действует, поэтому относится к интенсивным величинам.

В состоянии равновесия, по давление одинаково для всех точек системы.

В физике и химии оное обозначается с помощью буквы «Р», что является сокращением от латинского названия термина - pressūra.

Если речь идет об осмотическом давлении жидкости (равновесие между давлением внутри и снаружи клетки), используется буква «П».

Единицы давления

Согласно стандартам Международной системы СИ, рассматриваемое физическое явление измеряется в паскалях (кириллицей - Па, латиницей - Ра).

Исходя из формулы давления получается, что один Па равен одному Н (ньютон - разделенному на один квадратный метр (единица измерения площади).

Однако на практике применять паскали довольно сложно, поскольку эта единица очень мала. В связи с этим, помимо стандартов системы СИ, данная величина может измеряться по-другому.

Ниже приведены наиболее известные ее аналоги. Большинство из них широко используется на просторах бывшего СССР.

  • Бары . Один бар равен 105 Па.
  • Торры, или миллиметры ртутного столба. Приблизительно один торр соответствует 133, 3223684 Па.
  • Миллиметры водяного столба.
  • Метры водяного столба.
  • Технические атмосферы.
  • Физические атмосферы. Одна атм равна 101 325 Па и 1,033233 ат.
  • Килограмм-силы на квадратный сантиметр. Также выделяются тонна-сила и грамм-сила. Помимо этого, есть аналог фунт-сила на квадратный дюйм.

Общая формула давления (физика 7-го класса)

Из определения данной физической величины можно определить способ ее нахождения. Выглядит он таким образом, как на фото ниже.

В нем F - это сила, а S - площадь. Иными словами, формула нахождения давления - это его сила, разделенная на площадь поверхности, на которую оно воздействует.

Также она может быть записана так: Р = mg / S или Р = pVg / S. Таким образом, эта физическая величина оказывается связанной с другими термодинамическими переменными: объемом и массой.

Для давления действует следующий принцип: чем меньше пространство, на которое влияет сила - тем большее количество давящей силы на него приходится. Если, же площадь увеличивается (при той же силе) - искомая величина уменьшается.

Формула гидростатического давления

Разные агрегатные состояния веществ, предусматривают наличие у них отличных друг от друга свойств. Исходя из этого, способы определения Р в них тоже будут другими.

К примеру, формула давления воды (гидростатического) выглядит вот так: Р = pgh. Также она применима и к газам. При этом ее нельзя использовать для вычисления атмосферного давления, из-за разности высот и плотностей воздуха.

В данной формуле р - плотность, g - ускорение свободного падения, а h - высота. Исходя из этого, чем глубже погружается предмет или объект, тем выше оказываемое на него давление внутри жидкости (газа).

Рассматриваемый вариант является адаптацией классической примера Р = F / S.

Если вспомнить, что сила равна производной массы на скорость свободного падения (F= mg), а масса жидкости - это производная объема на плотность (m = pV), то формулу давление можно записать как P = pVg / S. При этом объем - это площад, умноженная на высоту (V = Sh).

Если вставить эти данные, получится, что площадь в числителе и знаменателе можно сократить и на выходе - вышеупомянутая формула: Р = pgh.

Рассматривая давление в жидкостях, стоит помнить, что, в отличие от твердых тел, в них часто возможно искривление поверхностного слоя. А это, в свою очередь, способствует образованию дополнительного давления.

Для подобных ситуаций применяется несколько другая формула давления: Р = Р 0 + 2QH. В данном случае Р 0 - давление не искривленного слоя, а Q - поверхность натяжения жидкости. Н - это средняя кривизна поверхности, которую определяют по Закону Лапласа: Н = ½ (1/R 1 + 1/R 2). Составляющие R 1 и R 2 - это радиусы главной кривизны.

Парциальное давление и его формула

Хотя способ Р = pgh применим как для жидкостей, так и для газов, давление в последних лучше вычислять несколько другим путем.

Дело в том, что в природе, как правило, не очень часто встречаются абсолютно чистые вещества, ведь в ней преобладают смеси. И это касается не только жидкостей, но и газов. А как известно, каждый из таких компонентов осуществляет разное давление, называемое парциальным.

Определить его довольно просто. Оно равно сумме давления каждого компонента рассматриваемой смеси (идеальный газ).

Из этого следует, что формула парциального давления выглядит таким образом: Р = Р 1 + Р 2 + Р 3 … и так далее, согласно количеству составляющих компонентов.

Нередки случаи, когда необходимо определить давление воздуха. Однако некоторые по ошибке проводят вычисления только с кислородом по схеме Р = pgh. Вот только воздух - это смесь из разных газов. В нем встречаются азот, аргон, кислород и другие вещества. Исходя из сложившейся ситуации, формула давления воздуха - это сумма давлений всех его составляющих. А значит, следует приметь вышеупомянутую Р = Р 1 + Р 2 + Р 3 …

Наиболее распространенные приборы для измерения давления

Несмотря на то что высчитать рассматриваемую термодинамическую величину по вышеупомянутым формулам не сложно, проводить вычисление иногда попросту нет времени. Ведь нужно всегда учитывать многочисленные нюансы. Поэтому для удобства за несколько столетий был разработан ряд приборов, делающих это вместо людей.

Фактически почти все аппараты такого рода являются разновидностями манометра (помогает определять давление в газах и жидкостях). При этом они отличаются по конструкции, точности и сфере применения.

  • Атмосферное давление измеряется с помощью манометра, именуемого барометром. Если необходимо определить разряжение (то есть давление ниже атмосферного) - применяются другая его разновидность, вакуумметр.
  • Для того чтобы узнать артериальное давление у человека, в ход идет сфигмоманометр. Большинству он более известен под именем неинвазивного тонометра. Таких аппаратов существуют немало разновидностей: от ртутных механических до полностью автоматических цифровых. Их точность зависит от материалов, из которых они изготавливаются и места измерения.
  • Перепады давления в окружающей среде (по-английски - pressure drop) определяются с помощью или дифнамометров (не путать с динамометрами).

Виды давления

Рассматривая давление, формулу его нахождения и ее вариации для разных веществ, стоит узнать о разновидностях этой величины. Их пять.

  • Абсолютное.
  • Барометрическое
  • Избыточное.
  • Вакуумметрическое.
  • Дифференциальное.

Абсолютное

Так называется полное давление, под которым находится вещество или объект, без учета влияния других газообразных составляющих атмосферы.

Измеряется оно в паскалях и являет собою сумму избыточного и атмосферного давлений. Также он является разностью барометрического и вакуумметрического видов.

Вычисляется оно по формуле Р = Р 2 + Р 3 или Р = Р 2 - Р 4 .

За начало отсчета для абсолютного давления в условиях планеты Земля, берется давление внутри емкости, из которой удален воздух (то есть классический вакуум).

Только такой вид давления используется в большинстве термодинамических формул.

Барометрическое

Этим термином именуется давление атмосферы (гравитации) на все предметы и объекты, находящие в ней, включая непосредственно поверхность Земли. Большинству оно также известно под именем атмосферного.

Его причисляют к а его величина меняется относительно места и времени измерения, а также погодных условий и нахождения над/ниже уровня моря.

Величина барометрического давления равна модулю силы атмосферы на площади единицу по нормали к ней.

В стабильной атмосфере величина данного физического явления равна весу столпа воздуха на основание с площадью, равной единице.

Норма барометрического давления - 101 325 Па (760 мм рт. ст. при 0 градусов Цельсия). При этом чем выше объект оказывается от поверхности Земли, тем более низким становится давление на него воздуха. Через каждый 8 км оно снижается на 100 Па.

Благодаря этому свойству в горах вода в чайниках закивает намного быстрее, чем дома на плите. Дело в том, что давление влияет на температуру кипения: с его снижением последняя уменьшается. И наоборот. На этом свойстве построена работа таких кухонных приборов, как скороварка и автоклав. Повышение давления внутри их способствуют формированию в посудинах более высоких температур, нежели в обычных кастрюлях на плите.

Используется для вычисления атмосферного давления формула барометрической высоты. Выглядит она таким образом, как на фото ниже.

Р - это искомая величина на высоте, Р 0 - плотность воздуха возле поверхности, g - свободного падения ускорение, h - высота над Землей, м - молярная масса газа, т - температура системы, r - универсальная газовая постоянная 8,3144598 Дж⁄(моль х К), а е - это число Эйклера, равное 2.71828.

Часто в представленной выше формуле давления атмосферного вместо R используется К - постоянная Больцмана. Через ее произведение на число Авогадро нередко выражается универсальная газовая постоянная. Она более удобна для расчетов, когда число частиц задано в молях.

При проведении вычислений всегда стоит брать во внимание возможность изменения температуры воздуха из-за смены метеорологической ситуации или при наборе высоты над уровнем моря, а также географическую широту.

Избыточное и вакуумметрическое

Разницу между атмосферным и измеренным давлением окружающей среды называют избыточным давлением. В зависимости от результата, меняется название величины.

Если она положительная, ее называют манометрическим давлением.

Если же полученный результат со знаком минус - его именуют вакуумметрическим. Стоит помнить, что он не может быть больше барометрического.

Дифференциальное

Данная величина является разницей давлений в различных точках измерения. Как правило, ее используют для определения падения давления на каком-либо оборудовании. Особенно это актуально в нефтедобывающей промышленности.

Разобравшись с тем, что за термодинамическая величина называется давлением и с помощью каких формул ее находят, можно сделать вывод, что это явление весьма важно, а потому знания о нем никогда не будут лишними.

Лабораторная работа № 11

КРАТКАЯ ТЕОРИЯ. Важнейший признак жидкости - существование свободной поверхности . Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10 -9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным , что приводит к появлению сил, которые называются силами поверхностного натяжения .

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения -физическая величина, показывающая силу поверхностного натяжения, действующую на единицу длины линии, разделяющей поверхность жидкости на части:

С другой стороны, поверхностное натяжение можно определить как величину, численно равную свободной энергии единицы поверхностного слоя жидкости. Под свободной энергией понимают ту часть энергии системы, за счет которой может быть совершена работа при изотермическом процессе.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит от того, какая среда находится над свободной поверхностью жидкости.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА. Экспериментальная установка изображена на рис. 1. Она состоит из аспиратора А, соединенного с микроманометром М и сосудом В, в котором находится исследуемая жидкость. В аспиратор наливается вода. С помощью крана К аспиратор А может отсоединяться от сосуда В и присоединяться к такому же сосуду С с другой исследуемой жидкостью. Сосуды В и С плотно закрываются резиновыми пробками, имеющими по отверстию. В каждое отверстие вставляется стеклянная трубочка, конец которой представляет собой капилляр. Капилляр погружается на очень малую глубину в жидкость (так, чтобы он только касался поверхности жидкости). Микроманометр измеряет разность давления воздуха в атмосфере и аспираторе, или, что то же самое, в капилляре и сосуде В или С.

Микроманометр состоит из двух сообщающихся сосудов, один из которых представляет собой чашку большого диаметра, а другой наклонную стеклянную трубку малого диаметра (2 - 3 мм) (рис. 2). При достаточно большом отношении площадей сечений чашки и трубки можно пренебречь изменением уровня в чашке. Тогда по уровню жидкости в трубке малого диаметра можно определить измеряемую величину разности давлений:

где - плотность манометрической жидкости; - расстояние вдоль трубки принимаемого неизменным уровня жидкости в чашке; - угол, образованный наклонной трубкой с плоскостью горизонта.

В начальный момент времени, когда давление воздуха над поверхностью жидкости в капилляре и сосуде В одинаково и равно атмосферному, уровень смачивающей жидкости в капилляре выше, чем в сосуде В, а уровень несмачивающей – ниже, так как смачивающая жидкость в капилляре образует вогнутый мениск, а несмачивающая - выпуклый.

Молекулярное давление под выпуклой поверхностью жидкости больше, а под вогнутым - меньше относительно давления под плоской поверхностью. Молекулярное давление, обусловленное кривизной поверхности, принято называть избыточным капиллярным давлением (давлением Лапласа) . Избыточное давление под выпуклой поверхностью считается положительным, под вогнутой - отрицательным. Сила этого давления всегда направлена к центру кривизны сечения поверхности. В случае сферической поверхности избыточное давление можно вычислить по формуле:

где - поверхностное натяжение, - радиус сферической поверхности.

Смачивающая капилляр жидкость поднимается до тех пор, пока гидростатическое давление столбика жидкости высотой (рис. 3) не уравновесит избыточного давления, направленного в этом случае вверх. Высота определяется из условия равновесия:

где - ускорение свободного падения, т.е.

Если, повернув кран аспиратора А, медленно выпускать из него воду, то давление воздуха в аспираторе, в соединенных с ним сосуде В и наклонном колене микроманометра, начнет уменьшаться. В капилляре же над поверхностью жидкости давление равно атмосферному. В результате увеличивающейся разности давлений мениск жидкости в капилляре будет опускаться, сохраняя кривизну, пока не опустится до нижнего конца капилляра (рис. 3в). В этот момент давление воздуха в капилляре будет равно:

где - давление воздуха в сосуде В, - глубина погружения капилляра в жидкость, - давление Лапласа. Разность давлений воздуха в капилляре и сосуде В равна:

С этого момента начинает меняться кривизна мениска. Давление воздуха в аспираторе и сосуде В продолжает уменьшаться. Так как разность давлений увеличивается, радиус кривизны мениска убывает, а кривизна возрастает. Наступает момент, когда радиус кривизны становится равным внутреннему радиусу капилляра (рис. 3в), а разность давлений становится максимальной. Затем радиус кривизны мениска снова увеличивается, и равновесие будет неустойчивым. Образуется пузырек воздуха, который отрывается от капилляра и поднимается на поверхность. Жидкость затягивает отверстие. Далее все повторяется. На рис. 4 показано, как меняется радиус кривизны мениска жидкости, начиная с момента, когда он дошел до нижнего конца капилляра.

Из сказанного выше следует, что:

, (1)

где - внутренний радиус капилляра. Эту разность можно определить с помощью микроманометра, так как

где - плотность манометрической жидкости, - максимальное смещение уровня жидкости в наклонной трубке микроманометра, - угол между наклонным коленом микроманометра и горизонталью (см. рис. 2).

Из формул (1) и (2) получим:

. (3)

Так как глубина погружения капилляра в жидкость ничтожна , то ею можно пренебречь, тогда:

или , (4)

где - внутренний диаметр капилляра.

В том случае, когда жидкость не смачивает стенки капилляра, за в формуле (4) принимают внешний диаметр капилляра. В качестве манометрической жидкости в микроманометре используется вода ( = 1×10 3 кг/м 3).

ИЗМЕРЕНИЯ. 1. Плотно закрыть резиновой пробкой капилляр, предварительно измерив его внутренний диаметр с помощью микроскопа. Капилляр вставить в отверстие пробки. Конец трубки привести в соприкосновение с жидкостью.

2. Налить в аспиратор воду до метки и закрыть его. Добиться равенства давлений в обоих коленах микроманометра, для чего на короткое время извлечь кран К. Установить его в такое положение, в котором он соединяет сосуд с аспиратором.

3. Открыть кран аспиратора настолько, чтобы изменение давления происходило достаточно медленно. Пузырьки воздуха должны отрываться примерно через каждые 10-15 с. После установления указанной частоты образования пузырьков можно проводить измерения.

ЗАДАНИЕ.

1. С помощью термометра определить и записать комнатную температуру T .

2. Девять раз определить максимальное смещение уровня жидкости в наклонном колене микроманометра. Для расчета коэффициента поверхностного натяжения взять среднее значение Н ср .

Задача 1

Турист проехал на велосипеде за один день 40 км. При этом с 9.00 до 11.20 он ехал со скоростью, которая равномерно возрастала со временем от 10 км/ч до 14 км/ч. Затем турист загорал на пляже. На оставшийся путь он потратил время с 18.30 до 20.00. Определите среднюю скорость туриста на вечернем участке поездки.

Возможное решение

С 9.00 до 11.20 турист ехал со средней скоростью (10 + 14)/2 = 12 км/ч (так как скорость возрастала равномерно со временем). Значит, за это время турист проехал расстояние

За время с 18.30 до 20.00 велосипедист проехал 40 – 28 = 12 км. Следовательно, средняя скорость туриста на вечернем участке поездки равна:

Критерии оценивания

  • Средняя скорость туриста на утреннем участке поездки (12 км/ч): 4 балла
  • Расстояние, которое проехал турист с 9.00 до 11.20 (28 км): 2 балла
  • Расстояние, которое проехал турист с 18.30 до 20.00 (12 км): 2 балла
  • Средняя скорость туриста на вечернем участке поездки (8 км/ч): 2 балла

Максимум за задачу – 10 баллов .

Задача 2

Система, состоящая из двух однородных стержней разной плотности, находится в равновесии. Масса верхнего стержня m 1 = 1,4 кг. Трение пренебрежимо мало.

Определите, при какой массе m 2 нижнего стержня возможно такое равновесие.

Возможное решение

Так как нижний стержень подвешен за концы, находится в равновесии и его центр тяжести располагается посередине, то силы реакции нитей, действующие на него, одинаковы и равны по модулю m 2 g/2 . Запишем уравнение моментов для верхнего стержня относительно точки крепления левой (верхней) нити:

Критерии оценивания

Силы реакции нитей, действующие на нижний стержень, равны: 3 балла

Значения модулей этих сил реакций (m 2 g/2 ): 2 балла

Уравнение моментов: 4 балла

m 2 = 1,2 кг : 1 балл

Максимум за задачу – 10 баллов .

Задача 3

В цилиндрическом сосуде с водой находится частично погружённое в воду тело, привязанное натянутой нитью ко дну сосуда. При этом тело погружено в воду на две трети своего объёма. Если перерезать нить, то тело всплывёт и будет плавать погружённым в воду наполовину. На сколько при этом изменится уровень воды в сосуде? Масса тела m = 30 г, плотность воды ρ = 1,0 г/см 3 , площадь дна сосуда S = 10 см 2 .

Возможное решение 1

Сила давления стакана на стол (после перерезания нити) не изменится, следовательно,

T = ρ·g· ∆h· S, где ܶT – сила реакции со стороны нити, ∆h – изменение уровня воды. Запишем уравнение равновесия тела в первом случае:

Mg = ρg·(1/2)·V

Из последних двух уравнений находим, что ܶT = 1/3 · mg

Окончательно получаем:

Критерии оценивания

  • Сила давления стакана на стол не изменится: 2 балла
  • Уравнение равновесия тела в первом случае: 2 балла
  • Уравнение равновесия тела во втором случае: 2 балла
  • T = 1/3 · mg: 1 балл
  • ∆h = T/(ρ·g · S): 2 балла
  • ∆h = 0,01м: 1 балл

Возможное решение 2

Уравнение равновесия тела во втором случае:

mg = ρg · ½ · V ⟹ V = 2m/ρ, где ܸV объём тела.

Изменение объёма погружённой части тела равно:

Окончательно получаем:

Критерии оценивания

  • mg = ρg · ½ · V: 4 балла
  • ∆V = 1/6 · V : 2 балла
  • ∆h = ∆V/S: 3 балла
  • ∆h = 0,01 м: 1 балл

Максимум за задачу – 10 баллов .

Задача 4

Определите давление воздуха над поверхностью жидкости в точке А внутри закрытого участка изогнутой трубки, если ρ = 800 кг/м 3 , h = 20 см, p 0 = 101 кПа, g = 10 м/с 2 . Жидкости плотностями ρ и 2ρ друг с другом не смешиваются.

Давление воздуха - сила, с которой воздух давит на земную поверхность. Измеряется в миллиметрах ртутного столба, миллибарах. В среднем она составляет 1,033 г. на 1 см. кв.

Причина, вызывающая образования ветра - разница атмосферного давления. Ветер дует из области более высокого атмосферного давления, в область с более низким. Чем больше разница в атмосферном давлении, тем сильнее ветер. Распределение атмосферного давления на Земле определяет направление ветров, господствующих в тропосфере на разных широтах.

Образуются при конденсации водяного пара в поднимающемся воздухе вследствие его охлаждения.
. Вода в жидком или твердом состоянии, выпадающая на земную поверхность, называется атмосферными осадками.

По происхождению выделяют два вида осадков:

выпадающие из облаков (дождь, снег, крупа, град);
образующиеся у поверхности Земли ( , роса, изморозь).
Измеряются осадки слоем воды (в мм.), который образуется, если выпавшая вода не стекает и не испаряется. В среднем за год на Землю выпадает 1130 мм. осадков.

Распределение осадков . Атмосферные осадки распределены по земной поверхности очень неравномерно. Одни территории страдают от избытка влаги, другие от её недостатка. Особенно мало получают осадков территории, расположенные вдоль северного и южного тропиков, где воздуха высоки и потребность в осадках особенно велика.

Главная причина такой неравномерности - размещение поясов атмосферного давления. Так, в области экватора в поясе низкого давления постоянно нагретый воздух содержит много влаги, он поднимается вверх, охлаждается и становится насыщенным. Поэтому в области экватора образуется много облаков, и идут обильные дожди. Немало осадков и в других областях земной поверхности, где низкое давление.

В поясах высокого давления преобладают нисходящие воздушные потоки. Холодный воздух, опускаясь, содержит мало влаги. При опускании он сжимается и нагревается, благодаря чему удаляется от точки насыщения, становится суше. Поэтому в областях повышенного давления над тропиками и у полюсов выпадает мало осадков.

По количеству выпадающих осадков ещё нельзя судить об обеспеченности территории влагой. Необходимо учитывать возможное испарение - испаряемость. Она зависит от количества солнечного тепла: чем больше его, тем больше влаги может испариться, если она есть. Испаряемость может быть большой, а испарение маленьким. Например, в испаряемость (сколько влаги может испариться при данной температуре) 4500 мм/год, а испарение (сколько действительно испаряется) всего 100 мм/год. По соотношению испаряемости и испарения судят об увлажненности территории. Для определения увлажнения пользуются коэффициентом увлажнения. Коэффициент увлажнения – отношение годового количества осадков к испаряемости за один и тот же промежуток времени. Он выражается дробью в процентах. Если коэффициент равен 1 - увлажнение достаточное, если меньше 1, увлажнение недостаточное, а если больше 1, то увлажнение избыточное. По степени увлажнения выделяются влажные (гумидные) и сухие (аридные) области.