У каких станций высокий кпд. Атомные электростанции. Международные проекты России по атомной энергетике

Коэффициент полезного действия (КПД) - характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. При производстве электрической энергии только часть (кинетической, тепловой и т.д.) преобразуется в электрическую энергию, остальное выделяется в виде тепла Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η («эта»). η = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах. Математически определение КПД может быть записано в виде:

где А - полезная работа, а Q - затраченная энергия.

В силу закона сохранения энергии КПД всегда меньше единицы, то есть невозможно получить полезной работы больше, чем затрачено энергии.

КПД теплового двигателя - отношение совершённой полезной работы двигателя, к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле:

η=(Q 1 -Q 2)/Q 2

где Q 1 - количество теплоты, полученное от нагревателя, Q 2 - количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах горячего источника T 1 и холодного T 2 , обладают тепловые двигатели, работающие по циклу Карно; этот предельный КПД равен:

η=(T 1 -T 2)/T 2

Тепловой КПД электростанций

При производстве электрической энергии часть тепловой энергии утилизируется на теплоснабжение. Соотношение между потраченной энергией и утилизированной, выраженное в процентах называется тепловым КПД.

Общий или суммарный КПД электростанций

Сумма КПД электрического и тепловлго КПД называется КПД использования топлива. Чем выше электрический и суммарный КПД, тем экономичнее работа электростанции. На АЭС и ГРЭС чаще всего тепло не используется и суммарный КПД равен электрическому. При расчете технико-экономического обоснования строительства (ТЭО) станции берется суммарный КПД. При выполнении проета отдельно разрабатывется схема выдачи электрической и тепловой мощности. Для стимулирования более высокого коэффициента импользования топлива принят ФЗ-261 энергосбережение и о повышении энергетической эффективности

Коммерческие потери электроэнергии

– потери, обусловленные хищениями электроэнергии, несоответствием показаний счетчиков оплате за электроэнергию бытовыми потребителями и другими причинами в сфере организации контроля потребления энергии. К коммерческим относят потери электрической энергии, обусловленные следующими факторами. Недостоверный учет: работа приборов учета с отклонениями от нормативных характеристик;

неправильное подключение цепей напряжения и тока, схем подключения электросчетчиков;

неисправность приборов учета, счетного механизма; ошибки при снятии показаний электросчетчиков и коэффициентов трансформации трансформаторов тока и напряжения; ошибочное или умышленное изменение коэффициентов пересчета или сведений о расходе электроэнергии;

замена приборов учета без согласования с энергосбытовыми подразделениями;

несанкционированное подключение токоприемников;

подключение токоприемников помимо счетчиков;

вмешательство в работу счетчиков с целью искажения показаний;

несообщение о неправильной работе счетчика;

недостаточная обеспеченность электросетей приборами контрольного (технического) учета. Ошибки в начислениях за отпущенную энергию:

ошибочные или недостоверные сведения о потребителе;

ошибки при передаче информации о расходе энергии с мест установки приборов учета в бухгалтерию;

ошибки при корректировке данных о потребителе;

невыставленные счета потребителю из-за отсутствия информации;

расчет по приборам учета не на границе балансовой принадлежности;

расчет по присоединенной мощности (дифтарифный акт). Неоплата энергии потребителями, находящимися на самооплате. О совершенствовании работы по снижению потерь при реализации электроэнергии в энергосистемах РАО «ЕЭС России». Приказ РАО «ЕЭС России» от 10.05.2001 г. № 228.

Потери электроэнергии в электрических сетях - важнейш
ий показатель экономичности их работы, наглядный индикатор состояния системы учета электроэнергии, эффективности энергосбытовой деятельности энергоснабжающих организаций.
Этот индикатор все отчетливей свидетельствует о накапливающихся проблемах, которые требуют безотлагательных решений в развитии, реконструкции и техническом перевооружении электрических сетей, совершенствовании методов и средств их эксплуатации и управления, в повышении точности учета электроэнергии, эффективности сбора денежных средств за поставленную потребителям электроэнергию и т.п.
По мнению международных экспертов, относительные потери электроэнергии при ее передаче и распределении в электрических сетях большинства стран можно считать удовлетворительными, если они не превышают 4-5 %. Потери электроэнергии на уровне 10 % можно считать максимально допустимыми с точки зрения физики передачи электроэнергии по сетям.
Становится все более очевидным, что резкое обострение проблемы снижения потерь электроэнергии в электрических сетях требует активного поиска новых путей ее решения, новых подходов к выбору соответствующих мероприятий, а главное, к организации работы по снижению потерь.
В связи с резким сокращением инвестиций в развитие и техническое перевооружение электрических сетей, в совершенствование систем управления их режимами, учета электроэнергии, возник ряд негативных тенденций, отрицательно влияющих на уровень потерь в сетях, таких как: устаревшее оборудование, физический и моральный износ средств учета электроэнергии, несоответствие установленного оборудования передаваемой мощности.
Из вышеотмеченного следует, что на фоне происходящих изменений хозяйственного механизма в энергетике, кризиса экономики в стране проблема снижения потерь электроэнергии в электрических сетях не только не утратила свою актуальность, а наоборот выдвинулась в одну из задач обеспечения финансовой стабильности энерго-снабжающих организаций.
Некоторые определения:
Абсолютные потери электроэнергии – разность электроэнергии, отпущенной в электрическую сеть и полезно отпущенной потребителям.
Технические потери электроэнергии – потери обусловленные физическими процессами передачи, распределения и трансформации электроэнергии, определяются расчетным путем.
Технические потери делятся на условно-постоянные и переменные (зависящие от нагрузки).
Коммерческие потери электроэнергии – потери, определяемые как разность абсолютных и технических потерь.

СТРУКТУРА КОММЕРЧЕСКИХ ПОТЕРЬ ЭЛЕКТРОЭНЕРГИИ
В идеальном случае коммерческие потери электроэнергии в электрической сети, должны быть равны нулю. Очевидно, однако, что в реальных условиях отпуск в сеть, полезный отпуск и технические потери определяются с погрешностями. Разности этих погрешностей фактически и являются структурными составляющими коммерческих потерь. Они должны быть по возможности сведены к минимуму за счет выполнения соответствующих мероприятий. Если такая возможность отсутствует, необходимо внести поправки к показаниям электросчетчиков, компенсирующие систематические погрешности измерений электроэнергии.

Погрешности измерений отпущенной в сеть и полезно отпущенной электроэнергии потребителям.
Погрешность измерений электроэнергии в общем случае может быть разбита на
множество составляющих.рассмотрим наиболее значимые составляющие погрешностей измерительных комплексов (ИК), в которые могут входить: трансформатор тока (ТТ), трансформатор напряжения (ТН), счетчик электроэнергии (СЭ), линия присоединения СЭ к ТН.
К основным составляющим погрешностей измерений отпущенной в сеть и полезно отпущенной электроэнергии относятся:

погрешности измерений электроэнергии в нормальных условиях
работы ИК, определяемые классами точности ТТ, ТН и СЭ;
дополнительные погрешности измерений электроэнергии в реальных условиях эксплуатации ИК, обусловленные:
заниженным против нормативного коэффициентом мощности
нагрузки (дополнительной угловой погрешностью); .
влиянием на СЭ магнитных и электромагнитных полей различной частоты;
недогрузкой и перегрузкой ТТ, ТН и СЭ;
несимметрией и уровнем подведенного к ИК напряжения;
работой СЭ в неотапливаемых помещениях с недопустимо низ­
кой температурой и т.п.;
недостаточной чувствительностью СЭ при их малых нагрузках,
особенно в ночные часы;
систематические погрешности, обусловленные сверхнормативными сроками службы ИК.
погрешности, связанные с неправильными схемами подключения электросчетчиков, ТТ и ТН, в частности, нарушениями фазировки подключения счетчиков;
погрешности, обусловленные неисправными приборами учета электроэнергии;
погрешности снятия показаний электросчетчиков из-за:
ошибок или умышленных искажений записей показаний;
неодновременности или невыполнения установленных сроков
снятия показаний счетчиков, нарушения графиков обхода счет­
чиков;
ошибок в определении коэффициентов пересчета показаний
счетчиков в электроэнергию.
Следует заметить, что при одинаковых знаках составляющих погрешностей измерений отпуска в сеть и полезного отпуска коммерческие потери будут уменьшаться, а при разных - увеличиваться. Это означает, что с точки зрения снижения коммерческих потерь электроэнергии необходимо проводить согласованную техническую политику повышения точности измерений отпуска в сеть и полезного отпуска. В частности, если мы, например, будем односторонне уменьшать систематическую отрицательную погрешность измерений (модернизировать систему учета), не меняя погрешность измерений, коммерческие потери при этом возрастут, что, кстати, имеет место на практике.

  • I. Общие вопросы тэс и аэс
  • 1. Каковы основные требования к работе тепловых и атомных электростанций?
  • 2. Какие электрические и тепловые нагрузки могут покрываться тепловыми и атомными электростанциями? Какие существуют графики электрических и тепловых нагрузок?
  • 3. Какие существуют показатели режимов производства и потребления электрической и тепловой энергии?
  • 4. Каковы возможность и целесообразность аккумулирования электрической и тепловой энергии?
  • 5. Какие существуют тепловые электростанции по виду используемой первичной природной энергии и по типу двигателя?
  • 6. Как классифицируются тэс по виду опускаемой энергии и по установленной электрической мощности? Что такое грэс? к какому типу электростанций по виду отпускаемой энергии относятся аэс?
  • 7. Как классифицируются электростанции по степени загрузки? к какому типу электростанций по этому признаку относятся грэс, тэц, аэс, гэс?
  • 8. Как классифицируются тэс по начальным параметрам водяного пара? к какому типу электростанций по этому признаку могут относиться грэс, тэц, аэс?
  • 9. Чем отличаются блочные и неблочные (с поперечными связями) тепловые схемы тэс? Каковы их достоинства и недостатки? Как выбирается структура тепловой схемы электростанции?
  • II. Технологическая схема электростанции
  • 10. Что такое технологическая схема тэс? Что включает в себя технологическая схема пылеугольной тэс? Какое оборудование тэс и аэс считается основным, а какое вспомогательным?
  • 11. Как происходит процесс преобразования энергии на тэс, работающей на органическом топливе?
  • 12. Как осуществляется подготовка топлива на электростанциях, работающих на угле, мазуте, природном газе, и на аэс?
  • 13. Каково назначение дутьевого вентилятора, регенеративного воздухоподогревателя, дымососа, золоуловителя, дымовой трубы? Как производится золошлакоудаление на пылеугольной тэс?
  • III. Показатели тепловой экономичности
  • 14. Какие потери энергии учитывает термический кпд цикла рабочего тела? Каковы основные способы повышения термического кпд цикла?
  • 16. Какие потери энергии учитывает кпд тепловой электростанции в целом? Чем отличаются кпд станции брутто и нетто?
  • 17. Что такое условное топливо? Введите понятия: удельный расход пара на турбину, удельный расход теплоты на турбоустановку, удельный расход условного топлива электростанции.
  • IV. Выбор начальных и конечных параметров пара
  • 19. Как выбираются начальные параметры пара на тэс, чем они ограничены? Что такое равнопрочные начальные параметры пара? Каковы начальные параметры пара в отечественной теплоэнергетике?
  • 21. Какие факторы влияют на выбор конечных параметров пара? Что такое кратность охлаждения в конденсаторе? Каково конечное давление пара на тэс и аэс?
  • 22. Какие существуют способы расширения действующих электростанций турбоустановками высоких параметров? Каковы достоинства и недостатки этих способов?
  • V. Промежуточный перегрев пара
  • 23. Каково назначение промежуточного перегрева пара? Как он осуществляется на тэс и аэс? Сравните эффективность промперегрева на кэс и тэц.
  • 24. Как выбирается количество ступеней и давление промперегрева? Почему давление промперегрева на тэц желательно иметь выше, чем на кэс?
  • VI. Регенеративный подогрев питательной воды
  • 25. Каково назначение системы регенеративного подогрева питательной воды? Как выбирается количество ступеней подогрева?
  • 26. Как распределяется суммарный подогрев между ступенями? Как определяется оптимальная температура питательной воды парогенератора?
  • 27. Каковы достоинства и недостатки регенеративных подогревателей смешивающего и поверхностного типов? Как определяется расход отборного пара в них и оптимальная величина недогрева?
  • 28. Что такое коэффициент недовыработки мощности паром отбора? Как определяется расход свежего пара на турбоустановку с регенеративным подогревом питательной воды?
  • 29. Каково влияние регенеративного подогрева на конечную влажность пара? Как влияет промперегрев пара на эффективность регенерации? Сравните эффективность регенерации на кэс и тэц.
  • 30. Какие бывают схемы вывода дренажей регенеративных подогревателей? Каково назначение охладителей дренажа и пароохладителей?
  • VII. Восполнение потерь пара и конденсата
  • 32. Какие внутристанционные и внешние потери пара и конденсата имеют место на тэс и аэс? Сравните потери рабочего тела на кэс и тэц.
  • 33. Какие существуют методы подготовки добавочной воды? Каковы назначение и принцип действия расширителей, испарителей и паропреобразователей?
  • VIII. Конденсационные установки
  • 34. Каковы назначение и состав конденсационной установки? Как выбираются конденсатные насосы?
  • 35. Каковы назначение и принцип действия эжектора? Почему на тэс и аэс предусматриваются пусковые эжекторы наряду с основными?
  • IX. Системы технического водоснабжения
  • 36. Каковы назначение и структура системы технического водоснабжения? Для каких целей используется техническая вода на тэс и аэс?
  • X. Деаэрационно-питательные установки
  • 38. Каково назначение деаэрации на тэс и аэс? Опишите пути поступления газов в пароводяной контур. Каково воздействие растворенных в воде газов на работоспособность оборудования?
  • 39. Какие существуют способы деаэрации воды? Каков принцип действия деаэраторов тэс и аэс?
  • 40. Приведите классификацию деаэраторов. Каковы условия применимости бездеаэраторных схем?
  • 41. Каково назначение питательной установки? Зачем устанавливается бустерный насос? Каковы возможные схемы включения питательных насосов?
  • XI. Отпуск тепловой энергии внешним потребителям
  • 43. Как определяется присоединенная тепловая нагрузка электростанции? Приведите классификацию систем теплоснабжения.
  • 44. Каковы назначение и состав сетевой подогревательной установки? Какие параметры прямой и обратной сетевой воды могут иметь системы теплоснабжения?
  • XII. Трубопроводы и арматура
  • XIII. Энергетические характеристики оборудования
  • 47. Что такое паровая и тепловая характеристика турбоустановки? Какими энергетическими потерями обусловлен расход пара на холостой ход турбины, что такое коэффициент холостого хода?
  • 48. Введите следующие понятия: номинальная, нормальная, располагаемая, рабочая, максимальная мощность агрегата. Почему номинальная мощность, как правило, превосходит располагаемую и нормальную?
  • 49. Для чего строятся диаграммы режимов турбоустановок? Как ими пользоваться? Что такое конденсационный хвост турбины, зачем нужен вентиляционный пропуск пара в конденсатор?
  • XIV. Выбор мощности электростанций и энергоблоков
  • 50. Как выбирается мощность электростанции в целом и мощность отдельных турбоагрегатов? Чем ограничена максимальная мощность тэс и аэс?
  • 51. Что представляют собой скрытый и явный резерв мощности? Что такое станционная, электросетевая, теплосетевая, системная авария? Как оценивается надежность оборудования?
  • XV. Выбор места строительства тэс и аэс
  • 52. Каковы основные требования к месту строительства электростанции? Каковы особенности выбора места строительства аэс? Что такое роза ветров в районе размещения станции?
  • 53. Какие изыскания проводятся при определении возможных площадок строительства тэс и аэс? Как принимается окончательное решение о выборе места строительства электростанции?
  • XVI. Генеральный план электростанции
  • 54. Что такое генеральный план электростанции? Что показывается на генеральном плане?
  • 55. Каков порядок составления генерального плана тэс и аэс? Каковы основные требования к генеральному плану?
  • 56. Какие количественные показатели характеризуют совершенство генерального плана? Каковы особенности генерального плана тэц? Каковы особенности генерального плана аэс?
  • Вышеназванный КПД ТЭС в целом – это КПД станции брутто , т.е. .

    Часть электроэнергии, вырабатываемой ТЭС и АЭС, расходуется на собственные нужды электростанции – на привод различных насосов, подготовку пылеугольного топлива к сжиганию, освещение цехов и т.д. Это обстоятельство учитывает КПД станции нетто , равный произведениюна величину (1 - К сн), где К сн – это доля расхода электроэнергии на собственные нужды, составляющая обычно от 4 до 10% общей мощности электростанции.

    17. Что такое условное топливо? Введите понятия: удельный расход пара на турбину, удельный расход теплоты на турбоустановку, удельный расход условного топлива электростанции.

    Для сопоставления запасов и расхода различных видов энергоресурсов (органическое топливо, гидроэнергия, ядерное топливо и др.) используется условное топливо , имеющее теплотворную способность 29310 кДж/кг (7000 ккал/кг). Это позволяет сравнивать между собой тепловую экономичность электростанций, использующих разные виды первичной природной энергии.

    Удельный расход пара на турбину – это расход свежего пара на единицу произведенной электроэнергии, кг/кВт·ч.

    Удельный расход теплоты на турбоустановку – это расход теплоты топлива на единицу произведенной электроэнергии. Данная величина является безразмерной.

    Удельный расход условного топлива электростанции – это расход условного топлива на единицу произведенной электроэнергии, гут/кВт·ч (гут – 1 грамм условного топлива).

    18. Опишите возможные способы теплоэлектроснабжения потребителей. Какие существуют показатели тепловой экономичности ТЭЦ? Что такое коэффициент теплофикации, как он зависит от температуры наружного воздуха?

    Существует два основных способа теплоэлектроснабжения потребителей :

    На базе комбинированного производства тепловой и электрической энергии (КПТЭ) турбинами ТЭЦ;

    - раздельная схема теплоэлектроснабжения , когда потребитель получает электроэнергию от энергосистемы, а тепловую энергию – от районной котельной.

    Производство электроэнергии теплофикационными турбинами ТЭЦ обеспечивает более высокие показатели тепловой экономичности по сравнению с КЭС, ибо на ТЭЦ часть работавшего в турбине пара отдает при конденсации свою теплоту не в окружающую среду, а тепловым потребителям.

    Тепловая экономичность ТЭЦ характеризуется следующими показателями:

    КПД ТЭЦ по производству электроэнергии, равный отношению электрической мощности к расходу теплоты топлива на выработку электрической энергии;

    КПД ТЭЦ по производству теплоты, равный отношению отпуска теплоты потребителям к расходу теплоты топлива на выработку тепловой энергии; этот КПД учитывает только потери в сетевых подогревателях и трубопроводах;

    Удельная выработка электроэнергии на тепловом потреблении, равная отношению теплофикационной электрической мощности (т.е. той части общей электрической мощности, которая обеспечивается паром, не доходящим до конденсатора) к расходу теплоты топлива на выработку тепловой энергии.

    При значительном возрастании тепловой нагрузки ТЭЦ может покрывать ее не только за счет отборов турбин, но и с помощью пиковой котельной. Коэффициент теплофикации α ТЭЦ показывает, какую долю суммарной тепловой нагрузки ТЭЦ покрывает за счет отборов турбин. В наиболее холодное время года α ТЭЦ уменьшается, так как возрастает доля тепловой нагрузки ТЭЦ, покрываемая за счет пиковой котельной.

86. Определить длину волны де-Бройля электронов, при бомбардировке которыми невозбужденных атомов водорода в их спектре появились две линии в первой инфракрасной серии.

87. Фотон с энергией 3 МэВ в поле тяжелого ядра превратился в пару электрон-позитрон. Если скорости этих частиц одинаковы, то какова их кинетическая энергия в МэВ? ().

88. Найти массу урана-238, имеющего такую же активность, как и стронций-90 массой 1 мг. Периоды полураспада урана и стронция соответственно 4·10 9 и 28 лет.

90 =96 . Атомная электростанция, имеющая КПД 25% расходует в сутки 235 г урана-235. Определите мощность станции, если при делении одного ядра урана выделяется
Дж энергии.

91 =95 . КПД атомной электростанции 20%. При делении одного ядра
выделяется 200 МэВ энергии. Сколько урана расходуется за 1 час работы электростанции мощностью 10 6 Вт.

92. Счетчик Гейгера, установленный вблизи препарата радиоактивного изотопа серебра регистрирует поток -частиц. При первом измерении поток Ф 1 частиц был равен 87 с -1 , а по истечении времени t = 1 сут поток Ф 2 оказался равным 22 с -1 . Определить период полураспада Т 1/2 изотопа.

93. Определить удельную энергию связи изотопа кислорода
. (масса нейтрона 1,00867a.e.м. , масса атома водорода 1,00783 a.e.м. , масса атома кислорода 16, 99913 a.e.м.). (МэВ).

94 . Определить суточный расход чистого урана
атомной электростанцией тепловой мощностьюР = 300 МВт, если энергия Е , выделяющаяся при одном акте деления ядра урана составляет 200 МэВ.

97 . КПД атомной электростанции мощностью 5000 кВт – 17%. При делении одного ядра
выделяется энергия 200 МэВ. Какое количество урана (г) расходует электростанция за сутки? (
).

99. Определить число атомов, распадающихся в радиоактивном изотопе за время t = 1 c, если его активность А = 0,1 МБк. Считать активность постоянной в течение указанного времени.

Атомная электростанция по своей сути ничем не отличается от ТЭС кроме как топливом. Для выработки используется ядерное топливо природного или искусственного происхождения. К природным можно отнести уран, добытый в глубоких шахтах естественным путем, а искусственным можно считать вторичное сырье, прошедшее специальную обработку. С точки зрения химии искусственным топливом может быть металлическая или карбидная, оксидная или нитритная, а возможно и смешанное.

Электрическая мощность атомной электростанции - формула

Так как наше государство является одним из шести стран, где добывается львиная доля урана, то и основным топливом для является данный элемент.

Принцип работы

После трагических событий на средства массовой информации активно распространялись слухи и внушали в подсознание граждан, будто любая электростанция, производящие энергию на атомном топливе рано или поздно приведет к взрыву и негативное воздействие на людей и окружающую среду. Самая высокая вырабатывается на Балаковской установке. Но многие ученые утверждают, что вероятность взрыва или любого другого вреда от Балаковской АЭС не больше чем от любого промышленного, производственного предприятия. Всё дело в том, что для выработки энергии необходимо тепло, которое получают в результате цепного ряда действия и реакции деление на атомы одного из вариантов ядерного топлива, чаще всего это Уран. Этот процесс считается основным рабочим на всей территории любой АЭС.

Типы реактивных двигателей

Все установки делятся на категории по используемому топливу для выработки энергии, по теплоносителю, замедлители, которая контролирует весь процесс проведения реакции. Для того чтобы показывать высокий уровень результативности, многие реакторы используют облегченную воду в виде Пара которая воздействует двумя разными способами.

Первый способ это подача теплого пара непосредственно в активной зоне. Уровень температуры такого энергоблока очень высок, в народе его называют кипящим блоком. Второй зависит от графитных материалов, с помощью которых вырабатывается газ, позволяющий отслеживать всю работу системы. На таком типе работы существует Балаковская станция.

История развития и строительства АЭС

Первым вариантом использования ядерного топлива для выработки энергии был осуществлен в лаборатории на территории Айдахо (вначале 1950-х, в США). Прототип выдавал мощность, которой хватало для работы четырёх ламп накаливания по 200Вт каждая. В ходе разработок, такая система смогла уже целое сооружение в несколько этажей. Пройдя сотни исследований и реакций, только в 1955 году такой реактор был подключен к целой сети, прославив город Арко по всему миру, как место расположения первого на свете реактора на ядерной энергии.

Но в то время, пока американцы проводили опыты и наблюдения, русские запустили на год раньше в 1954 году в городе Обнинске (СССР, Калужская область) атомной электростанции с мощностью в несколько раз большей. Именно с этого момента началось активное производства атомной энергетики россиян. Далее, спустя пару-тройку лет стали возводиться атомные станции как грибы, в течение следующих 10−15 лет советские граждане возвели 17 атомных станций.

Энергетические выработки ядерной системы

Какова электрическая мощность атомной электростанции ? На этот вопрос невозможно ответить однозначно, так как все АЭС в России имеют самые различные мощности от 48 мВт и до 4000 мВт. Последняя цифра достигается, в случае если атомная электростанция мощностью 1000 имеет по 4 реактора. Основное их количество работает на водяной системе, именуемой ВВЭР. Такой тип реактора самый распространенный в нашей стране (всего насчитывает порядка 18 единиц), из них с тысячной цифрой - 12 единиц. Не исключается также использование и кипящих систем канального типа. Таких реакторов в РФ всего 15.

Вода применима не только для энергетической или гетерогенной системы работы реактора, но и для водо-водяной или корпусной. Также, с помощью воды реактор во взаимодействии с тепловыми нейронами может быть применим как отражатель и замедлитель, а возможно и теплоноситель нейтронов.

Кстати, атомная электростанция мощностью 1000 имеет (кпд 20), с каждым реактором по 1000 мВт, является наиболее распространенной моделью не только в нашем государстве, но и в мире. Такого типа сооружений 7% в мире от общего количества.

Разновидности дизельных ЭС

Дизельная электростанция с мощностью необходимой под индивидуальные нужды является отличным вариантом для обеспечения электричеством отдаленного селения или конкретного дома от линий электропередач. Нередко сельские жители и владельцы кафе, магазинов предпочитают иметь дома и по необходимости устанавливать дизельный агрегат для выработки света на случай экстренных условий или общего отключения линейного электричества.

Приобретая такое изделие за не малые деньги, необходимо заранее определиться:

  • нужна подстанция передвижная или стационарная;
  • каков КПД (коэффициент полезного действия) необходим для подключения всего самого необходимого;
  • какой расход топлива и достаточно ли он экономно употребляется системой;
  • сверить комплектацию.

Средняя мощность для типичного дома без электроотопления и чрезмерного потребления составляет 5 кВт, а вот если необходимостей гораздо больше - то обеспечит электрическое отопление в зимний период.

Разновидности ЭС и их приоритеты

Установка преимущественно экономична (относительно ). А вот потребляет сырья для работы почти в 2 раза меньше, но выдает КПД станция, равнозначный по объему, как для дизельной, так и для бензиновой системы.

Наиболее экономичным способом организовать освещение в доме - это установить мощностью от 2 кВт и выше. Стоит заметить, что основой работы является яркое солнце, попадающее внутрь. Солнечная система, вполне может обеспечить собственные жилые помещения светом только в случае яркого солнечного дня.

Каковы масштабы выработки электроэнергии в РФ

Российская Федерация уверенно движется вперед по развитию своей энергетики, к тому же это позволяет делать наличие продуктивно работающих урановых шахт. Ввиду активного роста, все энергетические системы объединены в географические группы. В сотрудничестве с европейскими странами действуют 7 ОЭС, одновременно работают 6 энергетических объединений на территории всего государства: Центр, Урал, Волга, Сибирь, Северо-Запад и Юг. В дополнение имеется параллельная структура Востока, электрическая мощность этой электростанции транзитом обеспечивается Сибирским направлением.

В 2016 году на учет принято объединения Севастополя (Крым). На начало 2017 года в нашей стране действует порядка 700 электрических станций с разным видом обеспечения жизнедеятельности. А установленная мощность электростанций России за прошлый год отметку в 236 ГВт.

10,7% всемирной генерации электричества ежегодно вырабатывают атомные электростанции. Наряду с ТЭС и ГЭС они трудятся над обеспечением человечества светом и теплом, позволяют пользоваться электроприборами и делают наши жизнь удобнее и проще. Так уж вышло, что сегодня слова «атомная станция» ассоциируются с мировыми катастрофами и взрывами. Простые обыватели не имеют ни малейшего понятия о работе АЭС и ее строении, но даже самые непросвещенные наслышаны и напуганы происшествиями в Чернобыле и Фукусиме.

Что такое АЭС? Как они работают? Насколько опасны атомные станции? Не верьте слухам и мифам, давайте разбираться!

16 июля 1945 года на военном полигоне в США впервые извлекли энергию из ядра урана. Мощнейший взрыв атомной бомбы, принесший огромное количество человеческих жертв, стал прототипом современного и абсолютно мирного источника электроэнергии.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США. Для проверки работоспособности генератор подключили к 4м лампам накаливания, неожиданно для всех лампы зажглись. С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первая в мире атомная станция была запущена в Обнинске в СССР в 1954 году. Ее мощность составляла всего 5 мегаватт.

Что такое АЭС? АЭС это ядерная установка, которая производит энергию с помощью ядерного реактора. Ядерный реактор работает на ядерном топливе, чаще всего уране.

В основе принципа работы ядерной установки лежит реакция деления нейтронов урана , которые сталкиваясь друг с другом, делятся на новые нейтроны, которые, в свою очередь, тоже сталкиваются и тоже делятся. Такая реакция называется цепной, она и лежит в основе ядерной электроэнергетики. При всем этом процессе выделяется тепло, которое нагревает воду до ужасно горячего состояния (320 градусов по Цельсию). Потом вода превращается в пар, пар вращает турбину, она приводит в действие электрогенератор, который и вырабатывает электроэнергию.

Строительство АЭС сегодня ведется большими темпами. Основная причина роста количества АЭС в мире – это ограниченность запасов органического топлива, попросту говоря, запасы газа и нефти иссякают, они необходимы для промышленных и коммунальных нужд, а урана и плутония, выступающих топливом для атомных станций, нужно мало, его запасов пока вполне хватает.

Что такое АЭС? Это не только электричество и тепло. Наряду с выработкой электроэнергии, ядерные электростанции используются и для опреснения воды. К примеру, такая атомная станция есть в Казахстане.

Какое топливо используют на АЭС

На практике в атомных станциях могут применяться несколько веществ, способных выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, т.к. его сложнее преобразовать в тепловыделяющие элементы, если коротко ТВЭлы.

ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри ТВЭлов находятся радиоактивные вещества. Эти трубки можно назвать хранилищами ядерного топлива. Вторая причина редкого использования тория – это его сложная и дорогая переработка уже после использования на АЭС.

Плутониевое топливо тоже не используется в атомной электроэнергетике, т.к. это вещество имеет очень сложный химический состав, который до сих пор так и не научились правильно использовать.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. Уран сегодня добывается тремя способами: открытым способом в карьерах, закрытым в шахтах, и способом подземного выщелачивания, с помощью бурения шахт. Последний способ особенно интересен. Для добычи урана выщелачиванием в подземные скважины заливается раствор серной кислоты, он насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде. Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья. Для сравнения, в России из одной тонны руды получают чуть больше полутора килограмм урана.

Места добычи урана нерадиоактивны. В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

В виде руды уран в АЭС использовать нельзя, никаких реакций он дать не сможет. Сначала урановое сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом. Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при чудовищно высоких температурах больше 1500 градусов по Цельсию. Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Конечно, просто так урановые таблетки в реактор не закидываются. Они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки. Именно ТВС и могут по праву называться топливом АЭС.

Переработка топлива АЭС

Примерно через год использования уран в ядерных реакторах нужно менять. Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение. В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них сделают свежее ядерное топливо.

Продукты распада урана и плутония идут на изготовление источников ионизирующих излучений. Они используются в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в раскаленную печь и из остатков варится стекло, которое потом остается храниться в специальных хранилищах. Почему именно стекло? Из него будет очень сложно достать остатки радиоактивных элементов, которые могут навредить окружающей среде.

Новости АЭС — не так давно появившийся новый способ утилизации радиоактивных отходов. Созданы так называемые быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива. По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Кроме того, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного. Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого никто использовал.

Как строится АЭС?

Что такое атомная электростанция? Что представляет собой это нагромождение серых зданий, которые большинство из нас видело только по телевизору? Насколько прочны и безопасны эти конструкции? Каково строение АЭС? В сердце любой атомной станции находится здание реактора, рядом с ним помещается машинный зал и здание безопасности.

ВАЖНО ЗНАТЬ:

Строительство АЭС ведется согласно нормативным актам, регламентам и требованиям безопасности для объектов, работающих с радиоактивными веществами. Ядерная станция – полноправный стратегический объект государства. Поэтому толщина укладки стен и железобетонных арматурных сооружений в здании реактора в несколько раз больше, чем у стандартных сооружений. Таким образом, помещения атомных станций могут выдержать 8-бальное землетрясение, торнадо, цунами, смерчи и падение самолета.

Здание реактора венчается куполом, который защищен внутренней и внешней бетонными стенками. Внутреннюю бетонную стенку покрывает стальной лист, который в случае аварии должен создать закрытое воздушное пространство и не выпустить радиоактивные вещества в воздух.

Каждая АЭС имеет свой бассейн выдержки. Туда помещаются урановые таблетки, которые уже отслужили свой срок. После того, как урановое топливо вытаскивают из реактора, оно остается чрезвычайно радиоактивным, чтобы реакции внутри ТВЭлов перестали происходить, должно пройти от 3х до 10ти лет (в зависимости от устройства реактора, в котором топливо находилось). В бассейнах выдержки урановые таблетки остывают, и внутри них перестают происходить реакции.

Технологическая схема АЭС, а проще говоря, схема устройства атомных станций бывает нескольких типов, как и характеристика АЭС и тепловая схема АЭС, она зависит от типа ядерного реактора, который используется в процессе получения электроэнергии.

Плавучая АЭС

Что такое АЭС, нам уже известно, но российским ученым пришло в голову, взять атомную станцию и сделать ее передвижной. К сегодняшнему дню проект почти завершен. Назвали эту конструкцию плавучая АЭС. По задумке, плавучая ядерная электростанция сможет обеспечить электричеством город населением до двухсот тысяч человек. Главное ее достоинство – возможность перемещения по морю. Строительство АЭС, способной к передвижению, пока ведется только в России.

Новости АЭС это скорый запуск первой в мире плавучей ядерной электростанции, которая призвана обеспечить энергией портовый город Певек, находящийся в Чукотском автономном округе России. Называется первая плавучая атомная станция «Академик Ломоносов», строится мини-АЭС в Петербурге и планируется к запуску в 2016 – 2019 годах. Презентация атомной электростанции на плаву состоялась в 2015, тогда строители представили почти готовый проект ПАЭС.

Плавучая АЭС призвана обеспечить электроэнергией самые отдаленные города, имеющие выход к морю. Ядерный реактор «Академика Ломоносова» не такой мощный, как у сухопутных атомных станций, но имеет срок эксплуатации 40 лет, это значит, что жители небольшого Певека почти полвека не будут страдать от нехватки электричества.

Плавучая АЭС может быть использована не только как источник тепловой и электроэнергии, но и для опреснения воды. По расчетам, в сутки она может выдать от 40 до 240 кубометров пресной воды.
Стоимость первого блока плавучей АЭС составила 16 с половиной миллиардов рублей, как видим, строительство атомных станций – не дешевое удовольствие.

Безопасность АЭС

После Чернобыльской катастрофы в 1986 году и аварии на Фукусиме в 2011 слова атомная АЭС вызывают у людей страх и панику. На деле современные атомные станции оснащены по последнему слову техники, разработаны специальные правила безопасности, и в целом защита АЭС состоит из 3х уровней:

На первом уровне должна быть обеспечена нормальная эксплуатация АЭС. Безопасность АЭС во многом зависит от правильно подобранного места для размещения атомной станции, качественно созданного проекта, выполнения всех условий при постройке здания. Все должно отвечать регламентам, инструкциям по безопасности и планам.

На втором уровне важно не допустить перехода нормальной работы АЭС в аварийную ситуацию. Для этого существуют специальные приборы, которые контролируют температуру и давление в реакторах, и сообщают о малейших изменениях показаний.

Если первый и второй уровень защиты не сработали, в ход идет третий – непосредственная реакция на аварийную ситуацию. Датчики фиксируют аварию и сами реагируют на нее – реакторы глушатся, источники радиации локализируются, активная зона охлаждается, об аварии сообщается.

Безусловно, ядерная электростанция требует особого внимания к системе безопасности, как на стадии строительства, так и на стадии эксплуатации. Несоблюдения строгого регламента могут повлечь за собой очень серьезные последствия, однако сегодня большая часть ответственности за безопасность АЭС ложится на компьютерные системы, а человеческий фактор почти полностью исключен. Принимая во внимание высокую точность современных машин, в безопасности АЭС можно быть уверенными.

Специалисты уверяют, что в стабильно работающих современных атомных станциях или, находясь рядом с ними, получить большую дозу радиоактивного излучения невозможно. Даже работники АЭС, которые, к слову, ежедневно измеряют уровень полученного излучения, подвергаются облучению не больше, чем обычные жители крупных городов.

Ядерные реакторы

Что такое АЭС? Это в первую очередь работающий ядерный реактор. Внутри него и происходит процесс выработки энергии. В ядерный реактор закладываются ТВС, в нем же урановые нейтроны вступают в реакцию друг с другом, там же они передают тепло воде и так далее.

Внутри конкретного здания реактора находятся следующие сооружения: источник водоснабжения, насос, генератор, паровая турбина, конденсатор, деаэраторы, очиститель, клапан, теплообменник, непосредственно реактор и регулятор давления.

Реакторы бывают нескольких типов, в зависимости от того, какое вещество исполняет функцию замедлителя и теплоносителя в устройстве. Наиболее вероятно, что современная ядерная электростанция будет иметь реакторы на тепловых нейтронах:

  • водо-водяные (с обычной водой в качестве и замедлителя нейтронов, и теплоносителя);
  • графитоводные (замедлитель – графит, теплоноситель – вода);
  • графитогазовые (замедлитель – графит, теплоноситель – газ);
  • тяжеловодные (замедлитель – тяжёлая вода, теплоноситель – обычная вода).

КПД АЭС и мощность АЭС

Общий КПД АЭС (коэффициент полезного действия) с водо-водяным реактором около 33%, с графитоводным – около 40%, тяжеловодным – около 29%. Экономическая состоятельность АЭС зависит от КПД ядерного реактора, энергонапряженности активной зоны реактора, коэффициента использования установленной мощности за год и т.д.

Новости АЭС – обещание ученых в скором времени увеличить КПД атомных станций в полтора раза, до 50%. Это произойдет, если тепловыделяющие сборки, или ТВС, которые непосредственно закладываются в ядерный реактор, будут изготавливать не из сплавов циркония, а из композита. Проблемы АЭС сегодня в том, что цирконий недостаточно жаропрочен, он не выдерживает очень высоких температур и давления, поэтому и КПД АЭС выходит невысоким, композит же может выдержать температуру выше тысячи градусов по Цельсию.

Эксперименты по использованию композита в качестве оболочки для урановых таблеток ведутся в США, Франции и России. Ученые работают над увеличением прочности материала и его внедрением в атомную энергетику.

Что такое атомная электростанция? АЭС это мировая электрическая мощь. Общая электрическая мощность АЭС всего мира – 392 082 МВт. Характеристика АЭС зависит в первую очередь от ее мощности. Самая мощная атомная станция в мире находится во Франции, мощность АЭС Сиво (каждого блока) больше полутора тысяч МВт (мегаватт). Мощность других ядерных электростанций колеблется от 12 МВт в мини-АЭС (Билибинская АЭС, Россия) до 1382 МВт (атомная станция Фламанвиль, Франция). На этапе строительства находятся блок Фламанвиль с мощностью 1650 МВт, атомные станции Южной Кореи Син-Кори с мощностью АЭС в 1400 МВт.

Стоимость АЭС

АЭС, что это? Это и большие деньги. Сегодня людям нужны любые способы добычи электроэнергии. Водяные, тепловые и атомные электростанции повсеместно строятся в более или менее развитых странах. Строительство атомной станции – процесс не из легких, требует больших затрат и капиталовложений, чаще всего денежные ресурсы черпаются из государственных бюджетов.

В стоимость АЭС входят капитальные затраты — расходы на подготовку площади, строительство, введение оборудования в эксплуатацию (суммы капитальных расходов запредельные, к примеру, один парогенератор АЭС стоит больше 9ти миллионов долларов). Кроме того ядерные станции требуют и эксплуатационных расходов, которые включают в себя покупку топлива, расходы на его утилизацию и проч.

По многим причинам официальная стоимость ядерной станции высчитывается лишь приблизительно, сегодня ядерная станция обойдется примерно в 21-25 миллиардов евро. С нуля построить один атомный блок обойдется примерно в 8 миллионов долларов. В среднем срок окупаемости одной станции – 28 лет, срок эксплуатации – 40 лет. Как видно, атомные станции – достаточно дорогое удовольствие, но, как мы выяснили, невероятно нужное и полезное для нас с вами.