Үндсэн тригонометрийн таних тэмдэг. Тригонометрийн таних тэмдэг

Та захиалж болно нарийвчилсан шийдэлчиний даалгавар!!!

Тригонометрийн функцийн тэмдгийн дор үл мэдэгдэх зүйлийг агуулсан тэгшитгэлийг (`sin x, cos x, tan x` эсвэл `ctg x`) тригонометрийн тэгшитгэл гэж нэрлэдэг бөгөөд бид цаашид авч үзэх болно.

Хамгийн энгийн тэгшитгэлүүдийг `sin x=a, cos x=a, tg x=a, ctg x=a` гэж нэрлэдэг бөгөөд энд `x` нь олох өнцөг, `a` нь дурын тоо юм. Тэд тус бүрийн үндсэн томъёог бичье.

1. `sin x=a` тэгшитгэл.

`|a|>1`-ийн хувьд ямар ч шийдэл байхгүй.

Хэзээ `|a| \leq 1` байна хязгааргүй тоошийдвэрүүд.

Үндэс томьёо: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. `cos x=a` тэгшитгэл

`|a|>1`-ийн хувьд - синусын хувьд бодит тоонуудын дунд шийдэл байхгүй.

Хэзээ `|a| \leq 1` нь хязгааргүй олон шийдэлтэй.

Үндсэн томъёо: `x=\pm arccos a + 2\pi n, n \in Z`

График дахь синус ба косинусын тусгай тохиолдлууд.

3. `tg x=a` тэгшитгэл

`a`-ын дурын утгын хувьд хязгааргүй олон тооны шийдэлтэй.

Үндэс томъёо: `x=arctg a + \pi n, n \in Z`

4. `ctg x=a` тэгшитгэл

Мөн `a`-ын дурын утгуудын хувьд хязгааргүй тооны шийдэлтэй.

Үндэс томъёо: `x=arcctg a + \pi n, n \in Z`

Хүснэгт дэх тригонометрийн тэгшитгэлийн үндэсийн томъёо

Синусын хувьд:
Косинусын хувьд:
Тангенс ба котангенсийн хувьд:
Урвуу тригонометрийн функц агуулсан тэгшитгэлийг шийдвэрлэх томъёо:

Тригонометрийн тэгшитгэлийг шийдвэрлэх арга

Аливаа тригонометрийн тэгшитгэлийг шийдвэрлэх нь хоёр үе шатаас бүрдэнэ.

  • үүнийг хамгийн энгийн болгон хувиргах тусламжтайгаар;
  • дээр бичсэн язгуур томъёо, хүснэгтийг ашиглан олж авсан хамгийн энгийн тэгшитгэлийг шийд.

Жишээнүүдийг ашиглан шийдвэрлэх үндсэн аргуудыг авч үзье.

Алгебрийн арга.

Энэ арга нь хувьсагчийг сольж, тэгш байдал болгон орлуулахыг хэлнэ.

Жишээ. Тэгшитгэлийг шийд: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 - x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

орлуулах: `cos(x+\frac \pi 6)=y`, дараа нь `2y^2-3y+1=0`,

Бид язгуурыг олно: `y_1=1, y_2=1/2`, үүнээс дараах хоёр тохиолдол гарна:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3- \frac \pi 6+2\pi n`.

Хариулт: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Факторжуулалт.

Жишээ. Тэгшитгэлийг шийд: `sin x+cos x=1`.

Шийдэл. Тэгш байдлын бүх нөхцөлийг зүүн тийш шилжүүлье: `sin x+cos x-1=0`. -ийг ашиглан бид зүүн талыг хувиргаж, хүчин зүйл болгон хуваана:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n` , `x_2=\pi/2+ 2\pi n`.

Хариулт: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Нэг төрлийн тэгшитгэлд буулгах

Эхлээд та энэ тригонометрийн тэгшитгэлийг хоёр хэлбэрийн аль нэг болгон багасгах хэрэгтэй.

`a sin x+b cos x=0` (эхний зэргийн нэгэн төрлийн тэгшитгэл) эсвэл `a sin^2 x + b sin x cos x +c cos^2 x=0` (хоёрдугаар зэргийн нэгэн төрлийн тэгшитгэл).

Дараа нь хоёр хэсгийг эхний тохиолдолд `cos x \ne 0', хоёр дахь тохиолдолд `cos^2 x \ne 0' гэж хуваана. Бид мэдэгдэж буй аргуудыг ашиглан шийдвэрлэх шаардлагатай `tg x`: `a tg x+b=0` ба `a tg^2 x + b tg x +c =0`-ийн тэгшитгэлийг олж авдаг.

Жишээ. Тэгшитгэлийг шийд: `2 sin^2 x+sin x cos x - cos^2 x=1`.

Шийдэл. Баруун талыг нь `1=sin^2 x+cos^2 x` гэж бичье:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Энэ бол хоёрдугаар зэргийн нэгэн төрлийн тригонометрийн тэгшитгэл бөгөөд бид түүний зүүн ба баруун талыг `cos ^ 2 x \ne 0' гэж хуваавал бид дараахь зүйлийг авна.

`\frac (sin^2 x)(cos^2 x)+\frac(sin x cos x)(cos^2 x) — \frac(2 cos^2 x)(cos^2 x)=0`

`tg^2 x+tg x — 2=0`. `t^2 + t - 2=0` болох `tg x=t` орлуулалтыг танилцуулъя. Энэ тэгшитгэлийн үндэс нь `t_1=-2` ба `t_2=1` байна. Дараа нь:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \Z`-д.

Хариулт. `x_1=arctg (-2)+\pi n`, `n \Z-д`, `x_2=\pi/4+\pi n`, `n \Z-д`.

Хагас булан руу яв

Жишээ. Тэгшитгэлийг шийд: `11 sin x - 2 cos x = 10`.

Шийдэл. Давхар өнцгийн томьёог ашиглая: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x /2 +10 cos^2 x/2`

`4 тг^2 х/2 — 11 тг х/2 +6=0`

Дээр дурдсан алгебрийн аргыг ашигласнаар бид дараахь зүйлийг олж авна.

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Хариулт. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Туслах өнцгийн танилцуулга

`a sin x + b cos x =c` тригонометрийн тэгшитгэлд a,b,c нь коэффициент, x нь хувьсагч бөгөөд хоёр талыг `sqrt (a^2+b^2)`-д хуваана:

`\frac a(sqrt (a^2+b^2)) sin x +` `\frac b(sqrt (a^2+b^2)) cos x =` `\frac c(sqrt (a^2) ) +b^2))`.

Зүүн талд байгаа коэффициентүүд нь синус ба косинусын шинж чанартай, тухайлбал тэдгээрийн квадратуудын нийлбэр нь 1-тэй тэнцүү, модулиуд нь 1-ээс ихгүй байна. Тэдгээрийг дараах байдлаар тэмдэглэе: `\frac a(sqrt (a^2). +b^2))=cos \varphi` , ` \frac b(sqrt (a^2+b^2)) =sin \varphi`, `\frac c(sqrt (a^2+b^2)) =C`, тэгвэл:

`cos \varphi sin x + sin \varphi cos x =C`.

Дараах жишээг нарийвчлан авч үзье.

Жишээ. Тэгшитгэлийг шийд: `3 sin x+4 cos x=2`.

Шийдэл. Тэгш байдлын хоёр талыг `sqrt (3^2+4^2)`-д хуваавал бид дараахь зүйлийг авна.

`\frac (3 sin x) (sqrt (3^2+4^2))+` `\frac(4 cos x)(sqrt (3^2+4^2))=` `\frac 2(sqrt) (3^2+4^2))`

`3/5 sin x+4/5 cos x=2/5`.

`3/5 = cos \varphi` , `4/5=sin \varphi` гэж тэмдэглэе. `sin \varphi>0`, `cos \varphi>0` тул бид `\varphi=arcsin 4/5`-ийг туслах өнцөг болгон авна. Дараа нь бид тэгш байдлыг дараах хэлбэрээр бичнэ.

`cos \varphi sin x+sin \varphi cos x=2/5`

Синусын өнцгийн нийлбэрийн томъёог ашигласнаар бид тэгшитгэлээ дараах хэлбэрээр бичнэ.

`нүгэл (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Хариулт. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Бутархай рационал тригонометрийн тэгшитгэлүүд

Эдгээр нь тоологч ба хуваагч нь тригонометрийн функц агуулсан бутархайтай тэнцүү юм.

Жишээ. Тэгшитгэлийг шийд. `\frac (sin x)(1+cos x)=1-cos x`.

Шийдэл. Тэгш байдлын баруун талыг `(1+cos x)`-аар үржүүлж хуваа. Үүний үр дүнд бид:

`\frac (sin x)(1+cos x)=` `\frac ((1-cos x)(1+cos x))(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (1-cos^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)=` `\frac (sin^2 x)(1+cos x)`

`\frac (sin x)(1+cos x)-` `\frac (sin^2 x)(1+cos x)=0`

`\frac (sin x-sin^2 x)(1+cos x)=0`

Хуваагч нь 0-тэй тэнцүү байж болохгүй гэж үзвэл Z-д `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \ гэсэн утгыг авна.

Бутархайн тоог 0-тэй тэнцүү болгоё: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Дараа нь `sin x=0` эсвэл `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

` x \ne \pi+2\pi n, n \Z`-д шийдлүүд нь `x=2\pi n, n \in Z` ба `x=\pi /2+2\pi n` байна. , `n \in Z`.

Хариулт. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометр, ялангуяа тригонометрийн тэгшитгэлийг геометр, физик, инженерийн бараг бүх салбарт ашигладаг. Хичээл 10-р ангиас эхэлдэг, улсын нэгдсэн шалгалтын даалгавар үргэлж байдаг тул бүх томъёог санаж байхыг хичээ. тригонометрийн тэгшитгэл- тэд танд ашигтай байх нь гарцаагүй!

Гэсэн хэдий ч та тэдгээрийг цээжлэх шаардлагагүй, гол зүйл бол мөн чанарыг ойлгож, түүнийг гаргаж авах чадвартай байх явдал юм. Энэ нь санагдаж байгаа шиг хэцүү биш юм. Видеог үзэж өөрөө үзээрэй.

Энэ өгүүллийн эхэнд бид тригонометрийн функцүүдийн тухай ойлголтыг авч үзсэн. Тэдний гол зорилго нь тригонометрийн үндсийг судлах, үечилсэн үйл явцыг судлах явдал юм. Бид тригонометрийн тойрог зурсан нь дэмий хоосон байсангүй, учир нь ихэнх тохиолдолд тригонометрийн функцууд нь гурвалжны талуудын харьцаа эсвэл нэгж тойрог дахь түүний тодорхой сегментүүдийн харьцаагаар тодорхойлогддог. Орчин үеийн амьдрал дахь тригонометрийн маргаангүй асар их ач холбогдлыг би мөн дурдсан. Гэхдээ шинжлэх ухаан зогсохгүй байгаа тул бид тригонометрийн хамрах хүрээг мэдэгдэхүйц өргөжүүлж, түүний заалтуудыг бодит, заримдаа нарийн төвөгтэй тоонд шилжүүлж чадна.

Тригонометрийн томъёоХэд хэдэн төрөл байдаг. Тэдгээрийг дарааллаар нь харцгаая.

  1. Ижил өнцгийн тригонометрийн функцүүдийн харьцаа

  2. Энд бид ийм ойлголтыг авч үзэх болно үндсэн тригонометрийн таних тэмдэг.

    Тригонометрийн ижилсэл гэдэг нь тригонометрийн харилцаанаас бүрдэх, түүнд багтсан өнцгийн бүх утгын хувьд хангагдсан тэгш байдал юм.

    Хамгийн чухал тригонометрийн таних тэмдэг, тэдгээрийн нотолгоог харцгаая.

    Эхний таних нь шүргэгчийн тодорхойлолтоос үүдэлтэй.

    А орой дээр x хурц өнцөгтэй тэгш өнцөгт гурвалжинг ав.

    Тодорхойлолтыг батлахын тулд та Пифагорын теоремыг ашиглах хэрэгтэй.

    (BC) 2 + (AC) 2 = (AB) 2

    Одоо бид тэгш байдлын хоёр талыг (AB) 2-т хувааж, нүгэл ба кос өнцгийн тодорхойлолтыг эргэн санаснаар бид хоёр дахь ижил төстэй байдлыг олж авна.

    (BC) 2 /(AB) 2 + (AC) 2 /(AB) 2 = 1

    нүгэл x = (BC)/(AB)

    cos x = (AC)/(AB)

    sin 2 x + cos 2 x = 1

    Гурав, дөрөв дэх таних тэмдгийг батлахын тулд бид өмнөх нотолгоог ашигладаг.

    Үүнийг хийхийн тулд хоёр дахь таних тэмдгийн хоёр талыг cos 2 x-т хуваана:

    sin 2 x/ cos 2 x + cos 2 x/ cos 2 x = 1/ cos 2 x

    sin 2 x/ cos 2 x + 1 = 1/ cos 2 x

    Эхний таних тэмдэг дээр үндэслэн tg x = sin x /cos x бид гурав дахь зүйлийг олж авна.

    1 + бор 2 x = 1/cos 2 x

    Одоо хоёр дахь таних тэмдгийг нүгэл 2 х-т хуваая:

    нүгэл 2 х/ нүгэл 2 х + cos 2 х/ нүгэл 2 х = 1/ нүгэл 2 х

    1+ cos 2 x/ sin 2 x = 1/ sin 2 x

    cos 2 x/ sin 2 x нь 1/tg 2 x-ээс өөр зүйл биш тул бид дөрөв дэх ижил төстэй байдлыг олж авна.

    1 + 1/тг 2 х = 1/нүгэл 2 х

    Нийлбэрийн теоремыг санах цаг болжээ дотоод булангуудгурвалжин бөгөөд энэ нь гурвалжны өнцгийн нийлбэр = 180 0 байна. Гурвалжны В орой дээр 180 0 – 90 0 – x = 90 0 – x гэсэн өнцөг байгаа нь харагдаж байна.

    Нүгэл ба cos-ын тодорхойлолтыг дахин эргэн санаж, тав, зургаа дахь ижил төстэй байдлыг олж авцгаая.

    нүгэл x = (BC)/(AB)

    cos(90 0 – x) = (BC)/(AB)

    cos(90 0 – x) = sin x

    Одоо дараах зүйлийг хийцгээе.

    cos x = (AC)/(AB)

    sin(90 0 – x) = (AC)/(AB)

    sin(90 0 – x) = cos x

    Таны харж байгаагаар энд бүх зүйл энгийн зүйл юм.

    Математик таних тэмдгийг шийдвэрлэхэд ашигладаг бусад таних тэмдэгүүд байдаг, би тэдгээрийг энгийн хэлбэрээр өгөх болно. лавлагаа мэдээлэл, учир нь тэдгээр нь бүгд дээрхээс үүдэлтэй.

  3. Тригонометрийн функцуудыг бие биенээр нь илэрхийлэх

    (Үндэсний урд талын тэмдгийг сонгох нь тойргийн дөрөвний аль нь булангийн байрлалаар тодорхойлогддог вэ?)

  4. Өнцөг нэмэх, хасах томъёог доор харуулав.

  5. Давхар, гурав дахин, хагас өнцгийн томьёо.

    Тэд бүгд өмнөх томъёоллуудаас гаралтай гэдгийг би тэмдэглэж байна.

  6. sin 2x =2sin x*cos x

    cos 2x =cos 2 x -sin 2 x =1-2sin 2 x =2cos 2 x -1

    tg 2x = 2tgx/(1 - tg 2 x)

    сtg 2x = (сtg 2 x - 1) /2сtg x

    sin3x =3sin x - 4sin 3 x

    cos3х =4cos 3 x - 3cos x

    tg 3x = (3tgx – tg 3 x) /(1 - 3tg 2 x)

    сtg 3x = (сtg 3 x – 3сtg x) /(3сtg 2 x - 1)

  7. Тригонометрийн илэрхийллийг хөрвүүлэх томъёо:

МЭӨ V зуунд эртний Грекийн гүн ухаантанЭлеагийн Зено алдартай апориагаа томъёолсон бөгөөд хамгийн алдартай нь "Ахиллес ба яст мэлхий" апориа юм. Энэ нь дараах байдалтай байна.

Ахиллес яст мэлхийгээс арав дахин хурдан гүйж, түүнээс мянган алхмын ард байна гэж бодъё. Ахиллес энэ зайд гүйхэд шаардагдах хугацаанд яст мэлхий нэг чиглэлд зуун алхам мөлхөх болно. Ахиллес зуун алхам гүйхэд яст мэлхий дахиад арван алхам мөлхдөг гэх мэт. Энэ үйл явц эцэс төгсгөлгүй үргэлжлэх бөгөөд Ахиллес яст мэлхийг хэзээ ч гүйцэхгүй.

Энэ үндэслэл нь дараагийн бүх үеийнхний хувьд логик цочрол болсон. Аристотель, Диоген, Кант, Гегель, Гильберт... Тэд бүгд нэг талаараа Зеногийн апориа гэж үзсэн. Цочрол маш хүчтэй байсан тул " ... өнөөдрийг хүртэл хэлэлцүүлэг үргэлжилж байгаа бөгөөд шинжлэх ухааны нийгэмлэг парадоксуудын мөн чанарын талаар нэгдсэн саналд хүрч чадаагүй байна ... асуудлыг судлахад оролцсон; математик шинжилгээ, олонлогийн онол, физик, философийн шинэ хандлага; Тэдгээрийн аль нь ч асуудлыг шийдвэрлэх нийтээр хүлээн зөвшөөрөгдсөн шийдэл болсонгүй ..."[Википедиа, "Зеногийн Апориа". Хүн бүр хууртагдаж байгааг ойлгодог, гэхдээ хууран мэхлэлт юунаас бүрддэгийг хэн ч ойлгодоггүй.

Математикийн үүднээс авч үзвэл, Зено өөрийн апориадаа хэмжигдэхүүнээс -д шилжихийг тодорхой харуулсан. Энэ шилжилт нь байнгын бус хэрэглээг илэрхийлдэг. Миний ойлгож байгаагаар хувьсах хэмжлийн нэгжийг ашиглах математикийн төхөөрөмж хараахан боловсруулагдаагүй эсвэл Зеногийн апорид ашиглагдаагүй байна. Ердийн логикоо ашиглах нь биднийг урхинд оруулдаг. Бид сэтгэхүйн инерцийн улмаас цаг хугацааны тогтмол нэгжийг харилцан хамааралтай үнэ цэнэд ашигладаг. Физик талаас нь харвал энэ нь Ахиллес яст мэлхийг гүйцэх тэр мөчид бүрэн зогстол цаг удааширч байгаа мэт харагдаж байна. Хэрэв цаг хугацаа зогсвол Ахиллес яст мэлхийг гүйцэж чадахгүй.

Хэрэв бид ердийн логикоо эргүүлбэл бүх зүйл байрандаа орно. Ахиллес тогтмол хурдтайгаар гүйдэг. Түүний замын дараагийн хэсэг бүр өмнөхөөсөө арав дахин богино байна. Үүний дагуу үүнийг даван туулахад зарцуулсан хугацаа өмнөхөөсөө арав дахин бага байна. Хэрэв бид энэ нөхцөлд "хязгааргүй" гэсэн ойлголтыг ашиглавал "Ахиллес яст мэлхийг хязгааргүй хурдан гүйцэх болно" гэж хэлэх нь зөв байх болно.

Энэ логик урхинаас хэрхэн зайлсхийх вэ? Цагийн тогтмол нэгжид үлдэж, харилцан адилгүй нэгж рүү бүү шилжинэ. Зеногийн хэлээр энэ нь дараах байдалтай байна.

Ахиллес мянган алхам гүйхэд яст мэлхий нэг зүгт зуун алхам мөлхөх болно. Эхнийхтэй тэнцэх дараагийн хугацааны интервалд Ахиллес дахиад мянган алхам гүйж, яст мэлхий зуун алхам мөлхөх болно. Одоо Ахиллес яст мэлхийнээс найман зуун алхмын өмнө байна.

Энэ хандлага нь бодит байдлыг ямар ч логик парадоксгүйгээр хангалттай дүрсэлдэг. Гэхдээ энэ нь асуудлыг бүрэн шийдэж чадахгүй. Эйнштейний гэрлийн хурдыг үл тоомсорлодог тухай мэдэгдэл нь Зеногийн "Ахиллес ба яст мэлхий" апориатай тун төстэй юм. Бид энэ асуудлыг судалж, дахин бодож, шийдвэрлэх ёстой хэвээр байна. Мөн шийдлийг хязгааргүй олон тоогоор биш, хэмжилтийн нэгжээр хайх ёстой.

Зеногийн өөр нэг сонирхолтой апориа нь нисдэг сумны тухай өгүүлдэг.

Нисдэг сум цаг мөч бүрт амарч, цаг мөч бүрт амарч байдаг тул хөдөлгөөнгүй байдаг.

Энэ апорид логик парадоксыг маш энгийнээр даван туулдаг - цаг мөч бүрт нисдэг сум сансар огторгуйн өөр өөр цэгүүдэд амарч байгаа бөгөөд энэ нь үнэндээ хөдөлгөөн юм гэдгийг тодруулахад хангалттай. Энд бас нэг зүйлийг анхаарах хэрэгтэй. Зам дээрх машины нэг гэрэл зургаас түүний хөдөлгөөний баримт, түүнд хүрэх зайг тодорхойлох боломжгүй юм. Машин хөдөлж байгаа эсэхийг тодорхойлохын тулд цаг хугацааны өөр өөр цэгээс нэг цэгээс авсан хоёр гэрэл зураг хэрэгтэй боловч тэдгээрийн хоорондох зайг тодорхойлж чадахгүй. Машин хүртэлх зайг тодорхойлохын тулд танд сансар огторгуйн өөр өөр цэгүүдээс авсан хоёр гэрэл зураг хэрэгтэй, гэхдээ тэдгээрээс та хөдөлгөөний баримтыг тодорхойлж чадахгүй (мэдээжийн хэрэг, танд тооцоололд нэмэлт мэдээлэл хэрэгтэй, тригонометр танд туслах болно. ). Миний онцлохыг хүссэн зүйл онцгой анхаарал, цаг хугацааны хоёр цэг, сансар огторгуйн хоёр цэг нь судалгаа хийх өөр өөр боломжийг олгодог тул андуурч болохгүй өөр зүйл юм.

2018 оны 7-р сарын 4, Лхагва гараг

Багц ба олон багцын ялгааг Википедиа дээр маш сайн дүрсэлсэн байдаг. Харцгаая.

Таны харж байгаагаар "ижил олонлогт хоёр ижил элемент байх боломжгүй" боловч хэрэв олонлогт ижил элементүүд байгаа бол ийм олонлогийг "олон олонлог" гэж нэрлэдэг. Ухаантай хүмүүс ийм утгагүй логикийг хэзээ ч ойлгохгүй. Энэ бол "бүрэн" гэдэг үгнээс оюун ухаангүй ярьдаг тоть, сургасан сармагчингийн түвшин юм. Математикчид энгийн сургагч багшийн үүрэг гүйцэтгэж, утгагүй санаагаа бидэнд номлодог.

Эрт урьд цагт гүүрийг барьсан инженерүүд гүүрний туршилт хийж байхдаа гүүрэн доор завинд сууж байжээ. Хэрэв гүүр нурсан бол дунд зэргийн инженер өөрийн бүтээлийн нуранги дор нас баржээ. Гүүр ачааллыг даах чадвартай бол авъяаслаг инженер өөр гүүрүүдийг барьсан.

Математикчид “намайг бод, би гэртээ байна” гэх, эс тэгвээс “математик хийсвэр ойлголтуудыг судалдаг” гэсэн хэллэгийн ард яаж нуугдаж байсан ч тэдгээрийг бодит байдалтай салшгүй холбодог хүйн ​​зангилаа байдаг. Энэ хүйн ​​бол мөнгө. Математик олонлогын онолыг математикчдад өөрсдөө хэрэгжүүлцгээе.

Бид математикийн хичээлийг маш сайн сурсан, одоо цалингаа өгөөд кассанд сууж байна. Тэгэхээр нэг математикч мөнгөө авахаар манайд ирдэг. Бид түүнд бүх дүнг тоолж, өөр өөр овоолго хэлбэрээр ширээн дээр тавьж, ижил мөнгөн дэвсгэртийг оруулав. Дараа нь бид овоо бүрээс нэг дэвсгэрт авч, математикчдаа түүний "математикийн цалин" -ыг өгнө. Ижил элементгүй олонлог нь ижил элементтэй олонлогтой тэнцүү биш гэдгийг нотлох үед л үлдсэн үнэт цаасыг хүлээн авах болно гэдгийг математикчд тайлбарлая. Эндээс л зугаа цэнгэл эхэлдэг.

Юуны өмнө, депутатуудын логик ажиллах болно: "Үүнийг бусдад хэрэглэж болно, гэхдээ надад биш!" Дараа нь тэд ижил мөнгөн дэвсгэртүүд өөр өөр үнэт цаасны дугаартай байдаг тул тэдгээрийг ижил элемент гэж үзэх боломжгүй гэж биднийг тайвшруулж эхэлнэ. За, цалингаа зоосоор тоолъё - зоосон дээр ямар ч тоо байхгүй. Энд математикч физикийг сандарч санаж эхэлнэ: өөр өөр зоосон мөнгө дээр байдаг өөр өөр тоо хэмжээЗоос бүрийн шороо, талст бүтэц, атомын зохион байгуулалт нь өвөрмөц...

Одоо надад хамгийн их байна сонирхолтой асуулт: олон олонлогийн элементүүд олонлогийн элементүүд болон эсрэгээр хувирах шугам хаана байх вэ? Ийм шугам байхгүй - бүх зүйлийг бөө нар шийддэг, шинжлэх ухаан энд хэвтэхэд ойрхон ч биш юм.

Энд хар. Бид сонгодог хөлбөмбөгийн цэнгэлдэхүүдижил талбайтай. Талбайн талбайнууд ижил байна - энэ нь бид олон багцтай гэсэн үг юм. Гэхдээ эдгээр ижил цэнгэлдэх хүрээлэнгүүдийн нэрийг харвал нэр нь өөр учраас олон гарч ирнэ. Таны харж байгаагаар ижил элементүүдийн багц нь олонлог ба олон багц юм. Аль нь зөв бэ? Тэгээд энд математикч-бөө-хурц хүн ханцуйнаасаа бүрээ гаргаж ирээд багц эсвэл олон багцын тухай ярьж эхлэв. Ямар ч байсан тэр бидний зөв гэдэгт итгүүлэх болно.

Орчин үеийн бөө нар олонлогийн онолыг бодит байдалтай уялдуулан хэрхэн ажилладагийг ойлгохын тулд нэг олонлогийн элементүүд нөгөө олонлогийн элементүүдээс юугаараа ялгаатай вэ гэсэн нэг асуултад хариулахад хангалттай. Би та нарт "нэг бүхэл бүтэн биш гэж төсөөлж болохуйц" эсвэл "ганц бүхэлдээ төсөөлшгүй" зүйлгүйгээр харуулах болно.

2018 оны 3-р сарын 18, Ням гараг

Тооны цифрүүдийн нийлбэр гэдэг нь математикт огт хамааралгүй бөөгийн хэнгэрэгтэй бүжиг юм. Тийм ээ, математикийн хичээл дээр бид тооны цифрүүдийн нийлбэрийг олж, түүнийгээ ашиглахыг заадаг, гэхдээ тэд бөө учраас үр хойчдоо ур чадвар, мэргэн ухааныг зааж сургах, эс бөгөөс бөө нар зүгээр л үхэх болно.

Танд нотлох баримт хэрэгтэй байна уу? Википедиа нээгээд "Тооны цифрүүдийн нийлбэр" гэсэн хуудсыг хайж олоод үзээрэй. Тэр байхгүй. Аливаа тооны цифрүүдийн нийлбэрийг олох томьёо математикт байдаггүй. Эцсийн эцэст тоо бол бидний тоо бичдэг график тэмдэг бөгөөд математикийн хэлээр даалгавар нь иймэрхүү сонсогддог: "Аливаа тоог илэрхийлэх график тэмдгийн нийлбэрийг ол." Математикчид энэ асуудлыг шийдэж чадахгүй ч бөө нар амархан шийдэж чадна.

Өгөгдсөн тооны цифрүүдийн нийлбэрийг олохын тулд юу хийж, яаж хийхийг олж мэдье. Ингээд 12345 тоотой болцгооё. Энэ тооны цифрүүдийн нийлбэрийг олохын тулд юу хийх хэрэгтэй вэ? Бүх алхамуудыг дарааллаар нь авч үзье.

1. Цаасан дээр тоог бич. Бид юу хийсэн бэ? Бид энэ тоог график тооны тэмдэг болгон хөрвүүлсэн. Энэ бол математикийн үйлдэл биш юм.

2. Үүссэн нэг зургийг хэд хэдэн зураг болгон хайчилж, бие даасан тоонуудыг агуулна. Зургийг тайрах нь математикийн үйлдэл биш юм.

3. График тэмдэгтүүдийг тоо болгон хувиргах. Энэ бол математикийн үйлдэл биш юм.

4. Үүссэн тоонуудыг нэмнэ. Одоо энэ бол математик.

12345 тооны цифрүүдийн нийлбэр нь 15. Математикчдын хэрэглэдэг бөө нараас авсан “зүсэх, оёх дамжаа” юм. Гэхдээ энэ нь бүгд биш юм.

Математикийн үүднээс авч үзвэл ямар тооны системд тоо бичих нь хамаагүй. Тэгэхээр, in өөр өөр системүүдТооцооллын хувьд ижил тооны цифрүүдийн нийлбэр өөр байх болно. Математикийн хувьд тооны системийг тухайн тооны баруун талд байрлах доод тэмдэгтээр заадаг. ХАМТ их тоо 12345 Би толгойгоо хуурмааргүй байна, тухай нийтлэлээс 26 дугаарыг харцгаая. Энэ тоог хоёртын, наймтын, аравтын, арван зургаатын тооллын системд бичье. Бид алхам бүрийг микроскопоор харахгүй. Үр дүнг харцгаая.

Таны харж байгаагаар янз бүрийн тооны системд ижил тооны цифрүүдийн нийлбэр өөр өөр байдаг. Энэ үр дүн нь математиктай ямар ч холбоогүй юм. Хэрэв та тэгш өнцөгтийн талбайг метр, сантиметрээр тодорхойлсон бол огт өөр үр дүн гарахтай адил юм.

Тэг нь бүх тооны системд адилхан харагддаг бөгөөд цифрүүдийн нийлбэр байдаггүй. Энэ бол үүнийг батлах өөр нэг үндэслэл юм. Математикчдад зориулсан асуулт: математикт тоо биш зүйлийг яаж тодорхойлдог вэ? Математикчдын хувьд тооноос өөр юу ч байхгүй гэж үү? Би үүнийг бөө нарт зөвшөөрч болох ч эрдэмтдэд зөвшөөрөөгүй. Бодит байдал зөвхөн тоон дээр тогтдоггүй.

Хүлээн авсан үр дүнг тоон систем нь тоонуудын хэмжлийн нэгж гэдгийг нотлох баримт гэж үзэх ёстой. Эцсийн эцэст бид өөр өөр хэмжүүр бүхий тоонуудыг харьцуулж болохгүй. Хэрэв ижил хэмжигдэхүүнийг өөр өөр хэмжих нэгжүүдтэй ижил үйлдэл хийхэд хүргэдэг өөр өөр үр дүнТэднийг харьцуулсны дараа математиктай ямар ч холбоогүй гэсэн үг.

Жинхэнэ математик гэж юу вэ? Энэ нь математикийн үйлдлийн үр дүн нь тоон хэмжээ, ашигласан хэмжүүрийн нэгж, энэ үйлдлийг хэн гүйцэтгэж байгаагаас хамаарахгүй байх үед юм.

Хаалган дээр гарын үсэг зурна уу Тэр хаалгыг онгойлгоод:

Өө! Энэ эмэгтэйчүүдийн бие засах газар биш гэж үү?
- Залуу эмэгтэй! Энэ бол сүнснүүдийн тэнгэрт өргөмжлөгдөх үеийн ариун байдлыг судлах лаборатори юм! Дээрээс нь гал болон дээш сум. Өөр ямар бие засах газар вэ?

Эмэгтэй... Дээд талын гэрэлт цагираг, доош сум нь эрэгтэй.

Хэрэв иймэрхүү зүйл таны нүдний өмнө өдөрт хэд хэдэн удаа анивчдаг бол дизайн урлаг,

Дараа нь та машиндаа гэнэт хачин дүрсийг олж хараад гайхах зүйл алга.

Би хувьдаа баас хийж буй хүнд хасах дөрвөн градусыг харахыг хичээдэг (нэг зураг) (хэд хэдэн зургийн найрлага: хасах тэмдэг, дөрөв, градусын тэмдэглэгээ). Би энэ охиныг физик мэдэхгүй тэнэг гэж бодохгүй байна. Тэр зүгээр л график дүрсийг мэдрэх хүчтэй хэвшмэл ойлголттой. Үүнийг математикчид бидэнд байнга заадаг. Энд нэг жишээ байна.

1А нь "хасах дөрвөн градус" эсвэл "нэг а" биш юм. Энэ нь "баасан хүн" буюу арван зургаатын тооллын "хорин зургаа" гэсэн тоо юм. Энэ тооны системд байнга ажилладаг хүмүүс тоо, үсгийг нэг график тэмдэг болгон автоматаар хүлээн авдаг.


Энэ нийтлэлд бид цогцоор нь авч үзэх болно. Тригонометрийн үндсэн адилтгалууд нь нэг өнцгийн синус, косинус, тангенс, котангенсийн хооронд холбоо тогтоож, эдгээр тригонометрийн функцүүдийн аль нэгийг нь мэдэгдэж буй нөгөө өнцгөөр олох боломжийг олгодог тэгшитгэлүүд юм.

Энэ нийтлэлд дүн шинжилгээ хийх үндсэн тригонометрийн шинж чанаруудыг нэн даруй жагсаацгаая. Тэдгээрийг хүснэгтэд бичье, доор нь бид эдгээр томъёоны гаралтыг өгч, шаардлагатай тайлбарыг өгөх болно.

Хуудасны навигаци.

Нэг өнцгийн синус ба косинусын хамаарал

Заримдаа тэд дээрх хүснэгтэд жагсаасан үндсэн тригонометрийн таних тэмдгүүдийн тухай ярьдаггүй, харин нэг дан ганц зүйлийн тухай ярьдаг үндсэн тригонометрийн таних тэмдэгтөрлийн . Энэ баримтын тайлбар нь маш энгийн: үндсэн тригонометрийн шинж чанараас түүний хоёр хэсгийг тус тусад нь хувааж, тэгш байдлыг олж авна. Тэгээд синус, косинус, тангенс, котангенсийн тодорхойлолтоос дагана. Энэ талаар бид дараагийн догол мөрүүдэд илүү дэлгэрэнгүй ярих болно.

Өөрөөр хэлбэл, гол тригонометрийн таних тэмдэг гэж нэрлэгдсэн тэгш байдал нь онцгой анхаарал татаж байна.

Гол зүйлийг батлахын өмнө тригонометрийн ижилсэл, түүний томъёоллыг өгье: нэг өнцгийн синус ба косинусын квадратуудын нийлбэр нь нэгтэй ижил тэнцүү байна. Одоо үүнийг баталъя.

Үндсэн тригонометрийн таних тэмдэг нь ихэвчлэн хэрэглэгддэг үед тригонометрийн илэрхийллийг хөрвүүлэх. Энэ нь нэг өнцгийн синус ба косинусын квадратуудын нийлбэрийг нэгээр солих боломжийг олгодог. Тригонометрийн үндсэн шинж чанарыг урвуу дарааллаар ашигладаг: нэгжийг аль ч өнцгийн синус ба косинусын квадратуудын нийлбэрээр солино.

Синус ба косинусын шүргэгч ба котангенс

Нэг харах өнцгийн синус ба котангенстай тангенс ба котангенсыг холбосон таних тэмдэг ба синус, косинус, тангенс, котангенсийн тодорхойлолтыг шууд дагаж мөрдөөрэй. Үнэн хэрэгтээ, тодорхойлолтоор бол синус нь у-ийн ординат, косинус нь х-ийн абсцисса, тангенс нь ординатыг абсциссатай харьцуулсан харьцаа юм. , ба котангенс нь абсцисс ба ординатын харьцаа, өөрөөр хэлбэл, .

Ийм тодорхой байдлын ачаар таних тэмдэг болон Тангенс ба котангенсыг ихэвчлэн абсцисса ба ординатын харьцаагаар биш, харин синус ба косинусын харьцаагаар тодорхойлдог. Тэгэхээр өнцгийн тангенс нь синусыг энэ өнцгийн косинусын харьцаа, котангенс нь косинусын синустай харьцуулсан харьцаа юм.

Энэ догол мөрийн төгсгөлд хэн болохыг тэмдэглэх нь зүйтэй Эдгээрт багтсан тригонометрийн функцууд утга учиртай бүх өнцөгт явагдана. Тэгэхээр томьёо нь (эс тэгвэл хуваагч нь тэг байх болно, тэгээр хуваахыг бид тодорхойлоогүй) болон томьёоны хувьд хүчинтэй байна. - for all , өөр , энд z нь дурын .

Тангенс ба котангенс хоорондын хамаарал

Өмнөх хоёроос илүү тодорхой тригонометрийн ижилсэл нь хэлбэрийн нэг өнцгийн тангенс ба котангенсыг холбосон ижил төстэй байдал юм. . Энэ нь -ээс өөр өнцөгт тохирох нь тодорхой бөгөөд өөрөөр хэлбэл тангенс эсвэл котангенс тодорхойлогдоогүй болно.

Томъёоны баталгаа маш энгийн. Тодорхойлолтоор, хаанаас . Нотлох баримтыг арай өөрөөр хийж болох байсан. Түүнээс хойш , Тэр .

Тэгэхээр тэдгээрийн утга учиртай ижил өнцгийн тангенс ба котангенс нь .