Значение слова «время. Самая большая единица измерения времени. Звездное время и солнечное время

Попробуйте сходу дать точное определение: что такое время? Мысль вертится вокруг этого понятия, пытается ухватиться, но вот сформулировать однозначное определение сложно. Есть разные концепции и трактовки времени в философии, физике, метрологии.

В классической механике и теории относительности используются совершенно разные концепции времени. В первом случае время характеризует последовательность событий, происходящих в трехмерном пространстве. Во втором рассматривается еще и как четвертая координата.

Но обо всем по порядку. Давайте узнаем, как люди измеряли время, почему секунда - его мельчайшая принятая единица. Также определим понятие времени в физике, рассмотрим явления релятивистского и гравитационного замедления времени.

Что такое время?

Течение времени – совершенно естественное явление. Время идет, все вокруг меняется, происходят разные события. Именно поэтому о времени с точки зрения физики, в первую очередь, стоит говорить в контексте событий.

Если бы вокруг ничего не происходило, понятие времени не имело бы традиционного смысла. Другими словами, без событий времени не существует. Итак:

Время – мера того, как меняется окружающий мир. Время определяет длительность существования объектов, изменение их состояний и процессы, протекающие в них.

В системе СИ время измеряется в секундах и обозначается буквой t .

Как люди измеряли время?

Для измерения времени нужны какие-либо повторяющиеся с одинаковым периодом события. Например, смена дня и ночи. Солнце каждый день встает на востоке и садится на западе, а Луна каждый синодический месяц проходит весь цикл фаз освещенности солнцем - от тоненького серпа полумесяца до полнолуния.

Синодический месяц – время от одного новолуния до другого. За синодический месяц Луна совершает оборот вокруг Земли.

Древним людям ничего не оставалось, как привязать отсчет времени к движению небесных тел и событиям, связанным с ним. А именно – к смене дней, ночей и сезонов года.

В году 4 сезона и 12 месяцев. Именно столько раз за весну, лето, осень и зиму Луна меняет свои фазы.

По мере развития прогресса методы измерения времени совершенствовались, появились солнечные, водяные, песочные, огненные, механические, электронные и, наконец, молекулярные часы.


Часы FOCS 1 Часы FOCS 1 в Швейцарии измеряют время с погрешностью хода около одной секунды за 30 миллионов лет. Это очень точные часы, но через 30 миллионов лет их все же придется "подвести".

Почему в часе 60 минут, в минуте – 60 секунд, а в сутках – 24 часа?

Сразу оговоримся, что изложенное ниже во многом является личными предположениями автора, сделанными на основе исторических сведений. Если у наших читателей появятся уточнения или вопросы, мы будем рады видеть их в обсуждениях.

Древним народам нужна была какая-то основа, чтобы строить свои системы счисления. В Вавилоне за такую основу было взято число 60 .

Именно благодаря шестидесятеричной системе счисления, придуманной шумерами и позже распространившейся в Древнем Вавилоне, окружность содержит 360 градусов, градус – 60 минут, а минута – 60 секунд.

Год можно представить в виде окружности, содержащей 360 градусов. Возможно, число 360 в данном контексте взялось оттого, что в году 365 дней, и эту цифру просто округлили до 360 .

Когда-то самой короткой единицей измерения времени был час . Древние вавилоняне были сильными математиками и решили ввести меньшие единицы времени, используя свое любимое число 60 . Поэтому, в часе 60 минут, а в минуте 60 секунд.

Но почему день делится на 12 часов? За это нужно сказать спасибо древним египтянам и их двенадцатиричной системе. День и ночь делились на 12 раных частей, считаясь разными царствами бытия. Скорее всего, первоначально использование числа 12 связано с количеством оборотов Луны вокруг Земли за год.

Самая большая единица измерения времени

Самая большая единица измерения времени – кальпа . Кальпа является понятием из индуизма и буддизма. Она равняется примерно 4,32 миллиардам лет, что совпадает с возрастом Земли с точностью до 5% .

Как в голову древним индуистам пришли такие цифры? Ответа на этот вопрос мы не знаем, но вся система как будто говорит нам, что тогда люди знали о Вселенной немного больше, чем мы.


Кальпу в индуизме еще называют «днем Брахмы». День сменяется ночью, равной ему по продолжительности. 30 дней и ночей составляют месяц, а год состоит из 12 месяцев. Вся жизнь Брахмы – 100 лет, по прошествии которых мир погибает вместе с ним.

Если перевести сто лет Брахмы в наши традиционные годы, получится 311 триллионов и 40 миллиардов лет! Нынешнему Брахме 51 год.

Вывод: если все это правда, то беспокоится не стоит - Вселенная будет существовать еще долгое время.

Кальпа – самая большая единица измерения времени согласно книге рекордов Гиннеса.

Первые часы

Сначала было достаточно палочки, на которой каменным топором можно делать зарубки и тем самым отсчитывать прошедшие дни. Но это скорее был календарь, а не часы.

Первые и самые древние часы – солнечные. Их действие основано на изменении длины тени предметов по мере того, как солнце движется по небосводу. Такие часы представляли собой гномон – длинный шест, воткнутый в землю. Солнечные часы применялись в Древнем Египте и Китае. О них было доподлинно известно уже в 1200 году до нашей эры.


Затем появились водяные , песочные и огненные часы . Работа этих механизмов не была привязана к движению небесных светил. Долгое время водяные часы были главным инструментом для измерения времени.

Первые механические часы были изготовлены китайскими мастерами в 725 году нашей эры. Однако широкое распространение они получили относительно недавно.

В средневековой Европе механические часы устанавливались в башнях соборов и имели только одну стрелку – часовую. Карманные часы появились только в 1675 году (изобретение запатентовал Гюйгенс), а наручные – намного позже.

Первые наручные часы были исключительно женским аксессуаром. Они представляли собой богато украшенные изделия, точность хода которых отличалась огромными погрешностями. У уважающего себя мужчины не могло быть и мысли о том, чтобы носить наручные часы.

Современные часы

Сейчас механические или электронные часы есть у каждого. Они измеряют время с относительно небольшими погрешностями. Однако самыми точными часами в мире являются атомные часы. Их еще называют молекулярными или квантовыми.


Биг Бен - знаменитые башенные часы

Как мы помним, для определения единицы времени необходим какой-то периодический процесс. Когда-то самой короткой единицей был день. То есть единица измерения время была привязана к периодичности восхода и заката солнца. Потом минимальной единицей стал час, и так далее.

С 1967 года, согласно международной системе СИ , определение одной секунды привязано к периоду электромагнитного излучения, возникающего при переходе между сверхтонкими уровнями основного состояния атома Цезия-133 . А именно: одна секунда равна 9 192 631 770 таким периодам.

Время в физике

На данный момент не существует определенной и единой концепции определения времени в физике.

В классической механике время считается непрерывной, априорной и ничем не определяемой характеристикой мира.

Для измерения времени используется какая-либо периодическая последовательность событий. В классической физике время инвариантно относительно любой системы отсчета. То есть во всех системах события происходят одновременно.

Как найти время в физике? Простейшая формула, определяющая связь между пройденным путем, скоростью и временем, известна каждому школьнику и имеет вид:

Это формула времени для равномерного и прямолинейного движения. Здесь t - время, S - пройденное расстояние, v - cкорость.

Но самое интересное начинается в релятивистской физике . Приведем цитату Стивена Хокинга, физика, написавшего краткую историю времени.

Нам приходится принять, что время не отделено полностью от пространства и не независимо от него, но вместе с ним образует единый объект, который называется пространством-временем

Также в релятивистской физике время перестает быть инвариантом и можно говорить об относительности времени. Другими словами, ход времени зависит от движения системы отсчета.

Это так называемое релятивистское замедление времени. Если часы находятся в неподвижной системе отсчета, то в движущемся теле все процессы происходят медленнее, чем в неподвижном. Именно поэтому космонавт, путешествующий в космосе на супер скоростном корабле, практически не постареет по сравнению со своим братом близнецом, оставшимся на Земле.


Помимо релятивистского существует гравитационное замедление времени. Что это такое? Гравитационное замедление времени – изменение хода часов в гравитационном поле. Чем сильнее поле гравитации, тем сильнее замедление.

Вспомним о том, что секунда – это время, за которое атом изотопа цезия совершает 9 192 631 770 квантовых переходов. В зависимости от того, где находится атом (на земле, в космосе, вдали от любого объекта или у черной дыры) секунда будет иметь разные значения.

Поэтому и время процессов, связанных с данной системой отсчета, будет отличаться. Так, для наблюдателя у горизонта событий Шварцшильдовской черной дыры время практически остановится, а для наблюдателя на Земле все произойдет почти мгновенно.

Людей всегда волновала тема путешествий во времени. Предлагаем вам посмотреть научно-популярный фильм на эту тему и напоминаем, что если у вас совершенно нет времени на учебные дела, наш студенческий сервис всегда поможет справится с актуальными задачами и проблемами.

Фактрум последовательно рассматривает каждую из них.

1. Теория времени Святого Августина

У Святого Августина, христианского философа, были своеобразные представления о времени. Прежде всего, он считал, что время - не бесконечно. Время, по его словам, было создано Богом, кроме того, совершенно невозможно создать что-то бесконечное.

Когда что-то остаётся в прошлом , у него больше нет никаких свойств бытия, потому что оно больше не существует

А ещё Августин полагал, что время на самом деле существует лишь в нашем сознании и зависит только от того, как мы его трактуем. Мы можем сказать, что-то длится долго или не слишком долго, но Августин утверждал, что не существует ни одного реального способа объективно оценить это.

Когда что-то остаётся в прошлом, у него больше нет никаких свойств бытия, потому что теперь оно не существует. И когда мы говорим, что что-то «заняло слишком много времени» - это потому, что мы вспоминаем это «что-то» именно таким способом.

И так как мы измеряем время, основываясь лишь на том, как помним его, следовательно, и существовать оно должно лишь в нашей памяти. Что касается будущего, то оно ещё не существует, поэтому измерить его невозможно. Существует только настоящее, так что единственный логический вывод состоит в том, что понятие времени обитает исключительно у нас в голове.

2. Топология времени

Как выглядит время? Если вы попытаетесь представить его себе, вы вообразите его в виде прямой линии , которая никогда не заканчивается? А может, вы подумаете о чём-то вроде часов, стрелки которых описывают круг за кругом каждый день и каждый год?

Очевидно, что правильного ответа нет, но есть некоторые интригующие идеи, связанные с этим.

Аристотель полагал, что время не может существовать в виде линии. По крайней мере, у него нет ни начала, ни конца, несмотря на то, что должно быть время, когда всё началось. А если представить тот момент, когда всё началось, то придётся отметить точку до этого момента. А если мир перестанет существовать - то появится ещё одна точка, после этого момента.

А ещё совершенно непонятно, сколько может быть линий времени. Может ли это быть всего одна линия времени, направленная вперёд, или же этих линий много, они направлены параллельно друг другу, или наоборот - пересекаются? Может ли время быть одной линией, поделённой на множество отрезков? Может ли быть так, что моменты в потоке времени существуют совершенно независимо друг от друга? Относительно всего этого есть масса мнений. И ни единого ответа.

3. Правдоподобное настоящее

Идея «правдоподобного настоящего» пытается дать ответ на вопрос, как долго это настоящее длится. Обычный ответ, связанный с этим, звучит как «сейчас», но он не слишком информативен.

Допустим, когда в процессе разговора мы доходим до середины предложения, значит ли это, что мы уже закончили начало предложения, и оно осталось в прошлом? А сам разговор - он находится в настоящем времени? Или же в настоящем только часть разговора, а часть его - уже в прошлом?

Э. Р. Клей и Уильям Джеймс высказали идею «правдоподобного настоящего» - это промежуток времени, который мы ощущаем как настоящее. По мнению Клея и Джеймса, этот момент длится всего несколько секунд и не может длиться дольше минуты, и это - то количество времени, о котором мы сознательно осведомлены .

Но даже в этих рамках есть над чем поспорить.

Теоретически, всё перечисленное выше может быть связано с краткосрочной памятью человека - чем эта память лучше, тем дольше настоящее. Ещё есть мнение, что всё это лишь вопрос мгновенного восприятия. А как только вы полагаетесь на свою краткосрочную память - такой момент уже не может быть частью настоящего. То есть возникает проблема «правдоподобного настоящего», и чего-то наподобие «расширенного настоящего», которое возникает сразу после того, как «правдоподобное настоящее» исчезло.

Фактически, у настоящего вообще не должно быть продолжительности, потому что если она есть - часть настоящего сразу оказывается в прошлом, а часть в будущем, и возникает противоречие. А «правдоподобное настоящее» пытается объяснить настоящее как некий продолжительный интервал времени, и это весьма спорно.

4. Невысокие люди воспринимают «сейчас» раньше высоких

Это звучит странно, но в этом есть смысл. Эту теорию выдвинул нейробиолог Дэвид Иглмен, и назвал он её «привязкой по времени».

Всё это основано на идее о том, что мы воспринимаем мир, получая некие информационные пакеты, которые собираются нашими органами чувств, а затем обрабатываются мозгом. Информация от различных частей тела добирается до мозга за разное время. Допустим, вы идёте, на ходу пишете кому-то SMS, и внезапно ударяетесь головой о телеграфный столб. В то же самое время вы травмируете об этот же столб ещё и большой палец на ноге. Теоретически, информация о травме головы должна поступить в ваш мозг быстрее, чем информация о травме большого пальца ноги. Однако вы будете думать, что всё это вы почувствовали одновременно.

А всё потому, что мозг - это своего рода сенсорная структура с чёткой организацией. И эта структура выстраивает для нас вещи в порядке возрастания их смысла.

Указанная выше задержка в обработке информации играет на руку невысоким людям. Потому что невысокий человек ощущает более точную версию времени, поскольку в его случае информации требуется меньше времени, чтобы попасть в мозг.

5. Время замедляется, и мы можем это видеть

Одна из давних проблем физики связана с существованием тёмной энергии. Мы можем видеть эффекты от этой энергии, но понятия не имеем, что она такое.

Команда профессоров из Испании считает, что все усилия по поиску тёмной энергии оказались напрасны просто потому, что её не существует. Они полагают, что все эффекты тёмной энергии можно объяснить альтернативной идеей, что на самом деле мы видим замедление времени перед его возможной остановкой.

Возьмём астрономическое явление, известное как «красное смещение». Когда мы видим звёзды, светящиеся красным светом, мы знаем, что они ускоряются. Группа испанских профессоров объясняет феномен ускорения Вселенной не как результат присутствия в ней тёмной энергии, а как иллюзию, созданную замедлением времени.

У света времени достаточно для того, чтобы дойти до нас. И когда это наконец происходит, время замедляется, создавая иллюзию того, что всё вокруг ускоряется. Время останавливается чрезвычайно, невообразимо медленно, но если учесть обширность космического пространства и его умопомрачительные расстояния, то получится, что мы можем видеть, как замедляется время, просто глядя на звёзды.

6. Времени не существует

Также есть мнение, что времени не существует вовсе. Именно это утверждал в начале прошлого века философ Мактаггарт (J.M. E. McTaggart). По мнению Мактаггарта, при рассмотрении времени допустимо два подхода.

Первый подход называется А-Теория .

Она гласит, что время имеет определённый порядок и непрерывно течёт, что вещи в нём организованы так, как мы их видим. И что события перемещаются из прошлого в настоящее, а затем в будущее.

В-Теория , напротив, утверждает, что принятие временных рамок и самого времени - это иллюзия, и нет никакого способа, позволяющего сделать так, чтобы все события в мире происходили в строго определённом порядке.

Эта версия «времени» поддерживается лишь нашими воспоминаниями, а в нашей памяти, как правило, фиксируются отдельные события, и вспоминаем мы их как отдельные «временные карманы», а не как некий сплошной поток.

С учётом этой теории можно доказать, что времени не существует, поскольку для того, чтобы время существовало, требуется непрерывное изменение событий, мира и обстоятельств . В-теория по определению не ссылается на течение времени, и об изменениях там тоже речи не идёт. Таким образом, времени не существует.

Однако если А-Теория верна, то утверждение о том, что времени нет, выглядит слишком поспешным. К примеру, возьмём день, когда вам исполнился 21 год. С одной стороны, этот день когда-то был в будущем. С другой стороны, этот же день когда-то окажется и в прошлом. Но один и тот же момент не может быть одновременно и в прошлом, и в настоящем и в будущем. Именно поэтому Мактаггарт говорит, что А-Теория - противоречива, а следовательно невозможна, как и само время.

7. Теория четырёх измерений и блока Вселенной

Теория четырёх измерений и блока Вселенной связана с представлением о времени как о реальном измерении. Есть версия, что все объекты существуют в четырёх измерениях, а не в трёх. Четвёртое измерение - это время.

А в нём объекты тоже можно рассматривать с точки зрения их трёх размеров, то есть трёх измерений. Теория блока Вселенной представляет всю Вселенную в виде блока измерений, разделённых «прослойками» времени.

Этот блок имеет длину, ширину и высоту, и для всего в этом блоке, для каждого события, есть определённые слои времени. Каждый человек - это четырёхмерный объект, который существует в разных слоях времени. Есть слой времени для младенчества, есть слой для детства, для отрочества и так далее.

Таким образом, у временного слоя нет прошлого, настоящего или будущего. Однако каждая точка внутри блока Вселенной может оказаться либо прошлым, либо настоящим, либо будущим по отношению к другим точкам времени в этом блоке.

8. Эффект замедления времени

Иногда мы слышим рассказы людей, попавших в опасную для жизни или страшную ситуацию. И эти люди клянутся, что время в таких ситуациях замедляется. Подобное замедление часто ощущается во время событий, не поддающихся объяснению, или событий, случившихся внезапно. Это распространённое явление, и оно уже стало предметом множества дискуссий о том, что же мы испытываем на самом деле.

Исследователи решили узнать, что будет, если время и в самом деле замедлится. Например, мы смогли бы лучше рассмотреть многие вещи, потому что у нашего мозга есть нехорошая привычка смешивать похожие стимулы в одно общее событие, если интервал между стимулами менее 80 миллисекунд.

Был проведён один эксперимент.

Испытуемым предложили смотреть на цифры, которые мигали, и постоянно менялись. Так учёные хотели определить точку, в которой мозг перестаёт обращать внимание на время и человек начинает различать различные серии номеров.

Вначале эксперимент провели в нормальных условиях, а затем решили повторить в условиях экстремальных: участникам предлагалось смотреть на серии мигающих цифр, падая с башни высотой 46 м.

Затем их попросили посмотреть, как другие люди падают с той же башни и оценить, какими долгими эти падения были по сравнению с их падением.

Собственное падение испытуемым казалось на 36% дольше. Кроме того, в экстремальной ситуации люди лучше идентифицировали мигающие цифры. И всё это наводит на мысль, что это не какой-то момент времени замедляется для нас, а замедляется наша память об этом моменте.

И хотя практическая польза от эффекта замедления времени может быть удивительна, не следует забывать о том, что тот же эффект вполне может заставить ужасные события в нашей памяти длиться вечно.

9. Хронос, Кронос и Время

Ещё до попыток греческих философов объяснить время, у времени было мифологическое объяснение.

До начала времён были только изначальные боги - Хронос и Ананке. Хронос был богом времени, и был частично человеком, частично львом и частично быком.

Ананке был змеем, обвившимся вокруг яйца мира, и символом вечности. Ещё Хроноса в греко-римской мифологии часто изображают стоящим в зодиакальном круге, там его изображают человеком, причём человек этот может быть как молодым, так и старым.

Хронос был отцом титанов, и его часто путают с Кроносом, который тоже был связан со временем. Именно Кронос сверг с трона, а затем кастрировал собственного отца, а позднее был убит собственным сыном, Зевсом.

Хронос был тем, кто отвечал за смену времён года и за течение времени в целом. Но за вещи, происходящие с мужчинами и женщинами в течение этого времени, отвечал не Хронос, а кое-кто другой.

Жизненный цикл человека, его рождение, взросление, старение и смерть, был областью ответственности тех, кого называли богинями судьбы - Мойрами. Клото пряла нить жизни, Лахезис определяла человеческую судьбу, и наконец, Атропос перерезала нить, и жизнь человека на этом заканчивалась.

10. Мы плохо измеряем время

Когда речь заходит о физике пространства, о времени, о размерах и обо всём, что идёт в с ними комплекте, то время, пожалуй, объяснить сложнее всего.

Мы, вообще-то, не слишком хорошо измеряем время.

С одной стороны, есть время сидерическое, то есть время, измеряемое с помощью положения звёзд и вращения Земли. Очевидно, что это время хотя и варьируется, но очень незначительно.

Однако в 20-м веке астрономы установили, что вращение планеты замедляется, потому была создана ещё одна шкала - эфемеридное время.

Ещё позднее появилось так называемое топоцентрическое время (TDT) которое считалось наиболее точным, поскольку в его основе было международное атомное время (IAT). В 1991-м году атомное время было переименовано в Земное время (ТТ). И если отслеживание часовых поясов сегодня кому-то может показаться сложным, то не следует забывать, что даже в наши дни положение звёзд и иных небесных тел используется в сочетании с Земным временем, поскольку именно так достигается его максимальная точность.

Всё это говорит лишь об одном: мы до сих пор понятия не имеем, что нам делать со временем, несмотря на то, что живём по нему каждый день.

В русском языке имена существительные имеют категорию рода: мужского, среднего, женского или общего, могут быть одушевленными или неодушевленными, собственными или нарицательными, а также изменяться по числам и падежам. Изменение падежных окончаний соответствует определенному типу склонения, в котором учитываются все перечисленные характеристики. Правописание существительного время в форме косвенных падежей подчиняется особым правилам. Знание этих правил позволит избежать ошибки в ответе на вопрос о том, как нужно писать: время или времени ?

Существительное время относится к среднему роду, но в единственном числе изменяется по падежам не по II типу склонения, как, например, существительные море, окно, озеро , а по так называемому разносклоняемому типу. Он объединяет 10 существительных среднего рода, оканчивающихся на –мя : время, темя, вымя, стремя, знамя, семя, имя, пламя, племя, бремя, и одно существительное мужского рода путь. В родительном, дательном, творительном и предложном падежах, кроме устойчивых окончаний , -ем , они приобретают суффикс –ен -, а в именительном и винительном полностью совпадают по форме написания:

Падеж, вопрос Существительные на -мя
И. (что?) время темя знамя
Р. (чего?) времени темени знамени
Д. (чему?) времени темени знамени
В. (что?) время темя знамя
Т. (чем?) временем теменем знаменем
П. (о чем?) (о) времени (о) темени (о) знамени

В зависимости от того, в каком падеже употребляется существительное время , в предложении оно может иметь только одну из трех форм: время , времени или временем.

Пришло время собирать урожай яблок. (Им. п.)

Несмотря на позднее время, все еще было светло. (Вин. п.)

Сколько времени утекло с тех пор! (Род. п.)

Надо доверять своему времени . (Дат. п.)

Тем временем в зрительном зале происходило что-то странное. (Твор. п.)

Что вспоминать о былом времени ! (Пр. п.)

При выборе нужной падежной формы время или времени следует обращать внимание на вопрос, который можно поставить к слову. Вопросу что? соответствует форма время , вопросам чего? чему? о чем? – форма времени .

сайт дает следующие рекомендации по образованию и употреблению в речи падежных форм время и времени:

  1. В именительном и винительном падежах правильно употреблять форму время . В родительном, дательном и предложном употребляется форма времени .
  2. Существительное время в предложении выступает в роли подлежащего или прямого дополнения. Форма времени может быть дополнением или обстоятельством.
  3. С вопросительным местоимением сколько и наречием много сочетается форма родительного падежа: сколько времени; много времени .

Содержание статьи

ВРЕМЯ, понятие, позволяющее установить, когда произошло то или иное событие по отношению к другим событиям, т.е. определить, на сколько секунд, минут, часов, дней, месяцев, лет или столетий одно из них случилось раньше или позже другого. Измерение времени подразумевает введение временнóй шкалы, пользуясь которой можно было бы соотносить эти события. Точное определение времени базируется на дефинициях, принятых в астрономии и отличающихся высокой точностью.

Сейчас используются три основные системы измерения времени. В основе каждой из них конкретный периодический процесс: вращение Земли вокруг своей оси – всемирное время UT; обращение Земли вокруг Солнца – эфемеридное время ЕТ; и излучение (или поглощение) электромагнитных волн атомами или молекулами некоторых веществ при определенных условиях – атомное время АТ, определяемое с помощью высокоточных атомных часов. Всемирное время, обычно обозначаемое как «гринвичское среднее время», представляет собой среднее солнечное время на нулевом меридиане (с долготой 0° ), который проходит через город Гринвич, входящий в конурбацию Большого Лондона. На основе всемирного времени определяется поясное время, используемое для счета гражданского времени. Эфемеридное время – временнáя шкала, используемая в небесной механике при исследовании движения небесных тел, где требуется высокая точность расчетов. Атомное время – физическая временнáя шкала, применяемая в тех случаях, когда требуется чрезвычайно точное измерение «временн х интервалов» для явлений, связанных с физическими процессами.

Поясное время.

В повседневной практике на местах используется поясное время, которое отличается от всемирного на целое число часов. Всемирное время используется для счета времени при решении гражданских и военных задач, в астронавигации, для точного определения долготы в геодезии, а также при определении положения искусственных спутников Земли относительно звезд. Поскольку скорость вращения Земли вокруг своей оси не является абсолютно постоянной величиной, всемирное время не является строго равномерным по сравнению с эфемеридным или атомным временем.

Системы счета времени.

Единицей используемого в повседневной практике «среднего солнечного времени» являются «средние солнечные сутки», которые, в свою очередь, делятся следующим образом: 1 средние солнечные сутки = 24 средним солнечным часам, 1 средний солнечный час = 60 средним солнечным минутам, 1 средняя солнечная минута = 60 средним солнечным секундам. Одни средние солнечные сутки содержат 86 400 средних солнечных секунд.

Принято, что сутки начинаются в полночь и продолжаются 24 часа. В США для гражданских нужд принято сутки делить на две равные части – до полудня и после полудня, и соответственно в этих рамках вести 12-часовой счет времени.

Поправки к всемирному времени.

Сигналы точного времени по радио передаются в системе координированного времени (UTC), аналогичного среднему гринвичскому времени. Однако в системе UTC ход времени не вполне равномерен, там возникают отклонения с периодом ок. 1 года. В соответствии с международным соглашением в передаваемые сигналы вводится поправка, учитывающая эти отклонения.

На станциях службы времени определяется местное звездное время, по которому вычисляется местное среднее солнечное время. Последнее преобразуется в единое всемирное время (UT0) путем прибавления соответствующего значения, принятого для долготы, на которой расположена станция (к западу от Гринвичского меридиана). Таким образом устанавливается координированное всемирное время.

С 1892 известно, что ось земного эллипсоида испытывает колебания по отношению к оси вращения Земли с периодом примерно 14 мес. Расстояние между этими осями, измеренное на любом полюсе, составляет ок. 9 м. Следовательно, долгота и широта любой точки на Земле испытывают периодические вариации. Для получения более однородной шкалы времени в вычисленную для конкретной станции величину UT0 вводится поправка за изменение долготы, которая может достигать 30 мс (в зависимости от положения станции); таким образом получается время UT1.

Скорость вращения Земли подвержена сезонным изменениям, вследствие которых время, измеряемое вращением планеты, оказывается то «впереди», то «позади» звездного (эфемеридного) времени, причем отклонения в течение года могут достигать 30 мс. UT1, в которое внесена поправка, учитывающая сезонные изменения, обозначается UT2 (предварительное равномерное, или квазиравномерное, всемирное время). Время UT2 определяется на основе средней скорости вращения Земли, но на нем сказываются долгопериодные изменения этой скорости. Поправки, позволяющие рассчитать время UT1 и UT2 по UТ0, вводятся в унифицированной форме Международным бюро времени, находящимся в Париже.

АСТРОНОМИЧЕСКОЕ ВРЕМЯ

Звездное время и солнечное время.

Для определения среднего солнечного времени астрономы используют наблюдения не самого солнечного диска, а звезд. По звездам же определяется т.н. звездное, или сидерическое (от лат. siderius – звезда или созвездие), время. С помощью математических формул по звездному времени рассчитывается среднее солнечное время.

Если воображаемую линию земной оси продлить в обе стороны, она пересечется с небесной сферой в точках т.н. полюсов мира – Северного и Южного (рис. 1). На угловом расстоянии 90° от этих точек проходит большой круг, называемый небесным экватором, который является продолжением плоскости земного экватора. Видимый путь движения Солнца называется эклиптикой. Плоскости экватора и эклиптики пересекаются под углом ок. 23,5° ; точки пересечения носят название точек равноденствия. Ежегодно, примерно 20–21 марта, Солнце пересекает экватор при движении с юга на север в точке весеннего равноденствия. Эта точка почти неподвижна по отношению к звездам и используется в качестве репера для определения положения звезд в системе астрономических координат, а также звездного времени. Последнее измеряется величиной часового угла, т.е. угла между меридианом, на котором находится объект, и точкой равноденствия (отсчет производится на запад от меридиана). В пересчете на время один час соответствует 15 дуговым градусам. По отношению к наблюдателю, находящемуся на определенном меридиане, точка весеннего равноденствия ежедневно описывает на небосводе замкнутую траекторию. Промежуток времени между двумя последовательными пересечениями этого меридиана называется звездными сутками.

С точки зрения наблюдателя, находящегося на Земле, Солнце каждый день перемещается по небесной сфере с востока на запад. Угол между направлением на Солнце и небесным меридианом данной местности (измеряемый в западном направлении от меридиана) определяет «местное видимое солнечное время». Именно такое время показывают солнечные часы. Промежуток времени между двумя последовательными пересечениями Солнцем меридиана называется истинными солнечными сутками. За год (примерно 365 дней) Солнце «совершает» полный оборот по эклиптике (360° ), а значит за сутки смещается по отношению к звездам и точке весеннего равноденствия почти на 1° . Вследствие этого истинные солнечные сутки длиннее звездных на 3 мин 56 с среднего солнечного времени. Поскольку видимое движение Солнца по отношению к звездам неравномерно, истинные солнечные сутки также имеют неодинаковую продолжительность. Эта неравномерность движения светила происходит вследствие эксцентриситета земной орбиты и наклона экватора к плоскости эклиптики (рис. 2).

Среднее солнечное время.

Появление в 17 в. механических часов привело к необходимости введения среднего солнечного времени. «Среднее (или среднее эклиптическое) солнце» – это фиктивная точка, равномерно движущаяся по небесному экватору со скоростью, равной средней за год скорости движения истинного Солнца по эклиптике. Среднее солнечное время (т.е. время, протекшее от нижней кульминации среднего солнца) в любой момент на данном меридиане численно равно часовому углу среднего солнца (выраженному в часовой мере) минус 12 ч. Разность между истинным и средним солнечным временем, которая может достигать 16 мин, называется уравнением времени (хотя фактически уравнением не является).

Как отмечалось выше, среднее солнечное время устанавливается с помощью наблюдений за звездами, а не за Солнцем. Среднее солнечное время строго определяется угловым положением Земли относительно ее оси, вне зависимости от того, постоянна или переменна скорость ее вращения. Но именно потому, что среднее солнечное время является мерой вращения Земли, оно используется для определения долготы местности, а также во всех других случаях, когда требуются точные данные о положении Земли в пространстве.

Эфемеридное время.

Движение небесных тел описывается математически уравнениями небесной механики. Решение этих уравнений позволяет установить координаты тела в виде функции времени. Время, входящее в эти уравнения, по определению, принятому в небесной механике, является равномерным, или эфемеридным. Существуют специальные таблицы эфемеридных (теоретически вычисленных) координат, которые дают расчетное положение небесного тела через определенные (обычно одинаковые) промежутки времени. Эфемеридное время может быть установлено по движению любой планеты или ее спутников в Солнечной системе. Астрономы определяют его по движению Земли по орбите вокруг Солнца. Оно может быть найдено путем наблюдений за положением Солнца по отношению к звездам, но обычно для этого следят за движением Луны вокруг Земли. Видимый путь, который Луна проходит в течение месяца среди звезд, может рассматриваться как своеобразные часы, в которых звезды образуют циферблат, а Луна служит часовой стрелкой. При этом эфемеридные координаты Луны должны быть вычислены с высокой степенью точности, и столь же точно должно быть определено ее наблюдаемое положение.

Положение Луны обычно определялось по времени прохождения через меридиан и покрытию звезд лунным диском. Наиболее современный метод представляет собой фотографирование Луны среди звезд с помощью специальной фотокамеры. В этой камере используется плоскопараллельный светофильтр из темного стекла, которому во время 20-секундной экспозиции придается наклон; вследствие этого изображение Луны смещается, и это искусственное смещение как бы компенсирует действительное движение Луны по отношению к звездам. Таким образом, Луна сохраняет строго фиксированное положение относительно звезд, и все элементы на снимке получаются отчетливыми. Поскольку положение звезд известно, измерения по снимку позволяют точно определить координаты Луны. Эти данные сводятся в виде эфемеридных таблиц Луны и позволяют рассчитать эфемеридное время.

Определение времени с помощью наблюдений за вращением Земли.

В результате вращения Земли вокруг оси происходит кажущееся движение звезд с востока на запад. В современных методах определения точного времени используются астрономические наблюдения, заключающиеся в регистрации моментов прохождения звезд через небесный меридиан, положение которого строго определено по отношению к астрономической станции. Для этих целей обычно использовался т.н. «малый пассажный инструмент» – телескоп, смонтированный таким образом, что его горизонтальная ось ориентирована по широте (с востока на запад). Труба телескопа может быть направлена в любую точку небесного меридиана. Для наблюдения прохождения звезды через меридиан в фокальной плоскости телескопа помещается крестообразная тонкая нить. Время прохождения звезды фиксируется с помощью хронографа (устройства, регистрирующего одновременно сигналы точного времени и импульсы, возникающие внутри самого телескопа). Таким образом определяется точное время прохождения каждой звезды через данный меридиан.

Значительно бóльшую точность измерения времени вращения Земли дает использование фотографической зенитной трубы (ФЗТ). ФЗТ представляет собой телескоп с фокусным расстоянием 4,6 м и входным отверстием диаметром 20 см, обращенным прямо в зенит. Небольшая фотографическая пластинка размещается под линзой на расстоянии ок. 1,3 см. Еще ниже, на расстоянии, равном половине фокусного, расположена ванна с ртутью (ртутный горизонт); ртуть отражает свет звезд, фокусирующийся на фотопластинке. И линза, и фотопластинка могут поворачиваться как единый блок на 180° вокруг вертикальной оси. При фотографировании звезды делается четыре 20-секундных экспозиции при различных положениях линзы. Пластинка перемещается с помощью механического привода таким образом, чтобы компенсировать видимое суточное движение звезды, удерживая ее в поле зрения. При движении каретки с фотокассетой автоматически регистрируются моменты прохождения ее через определенную точку (например, путем замыкания контакта часов). Отснятая фотопластинка проявляется, и полученное на ней изображение измеряется. Данные измерений сопоставляются с показаниями хронографа, что дает возможность установить точное время прохождения звезды через небесный меридиан.

В другом инструменте для определения звездного времени – призменной астролябии (не следует путать этот прибор со средневековым угломерным инструментом того же названия), 60-градусная (равносторонняя) призма и ртутный горизонт помещаются перед линзой телескопа. В призменной астролябии получаются два изображения наблюдаемой звезды, которые совпадают в момент, когда звезда находится на высоте 60° над горизонтом. При этом автоматически регистрируется показание часов.

Во всех этих инструментах используется один и тот же принцип – для звезды, координаты которой известны, определяется время (звездное или среднее) прохождения через определенную линию, например небесный меридиан. При наблюдениях специальными часами фиксируется время прохождения. Разность между вычисленным временем и показаниями часов дает поправку. Величина поправки показывает, сколько минут или секунд нужно прибавить к показаниям часов, чтобы получить точное время. Например, если расчетное время 3 ч 15 мин 26,785 с, а на часах 3 ч 15 мин 26,773 с, то часы отстают на 0,012 с и поправка составляет 0,012 с.

Обычно за ночь проводится наблюдение за 10–20 звездами, и по ним вычисляется средняя поправка. Последовательная серия поправок позволяет определить точность хода часов. При помощи таких инструментов, как ФЗТ и астролябия, за одну ночь устанавливается время с точностью ок. 0,006 с.

Все эти инструменты предназначены для определения звездного времени, по которому устанавливается среднее солнечное время, а последнее переводится в поясное время.

ЧАСЫ

Чтобы следить за течением времени, необходим простой способ его определения. В древности для этого использовались водяные или песочные часы. Точное определение времени стало возможным после того, как Галилей в 1581 установил, что период колебаний маятника почти не зависит от их амплитуды. Однако практическое использование этого принципа в маятниковых часах началось лишь спустя сто лет. Самые совершенные маятниковые часы сейчас имеют точность хода ок. 0,001–0,002 с в сутки. Начиная с 1950-х годов, маятниковые часы перестали использоваться для точных измерений времени и уступили место кварцевым и атомным часам.

Кварцевые часы.

Кварц обладает т.н. «пьезоэлектрическими» свойствами: при деформации кристалла возникает электрический заряд, и наоборот под действием электрического поля происходит деформация кристалла. Контроль, осуществляемый с помощью кристалла кварца, позволяет получить почти постоянную частоту электромагнитных колебаний в электрическом контуре. Пьезокварцевый генератор обычно создает колебания с частотой 100 000 Гц и выше. Специальное электронное устройство, известное под названием «делитель частоты», позволяет снизить частоту до 1000 Гц. Сигнал, полученный на выходе, усиливается и приводит в действие синхронный электромотор часов. Фактически, работа электромотора синхронизирована с колебаниями пьезокристалла. С помощью системы зубчатых передач мотор может быть соединен со стрелками, показывающими часы, минуты и секунды. По существу, кварцевые часы представляют собой сочетание пьезокварцевого генератора, делителя частоты и синхронного электромотора. Точность хода лучших кварцевых часов достигает нескольких миллионных долей секунды в сутки.

Атомные часы.

Для отсчета времени могут быть использованы также процессы поглощения (или излучения) электромагнитных волн атомами или молекулами некоторых веществ. Для этого применяется сочетание атомного генератора колебаний, делителя частоты и синхронного мотора. Согласно квантовой теории, атом может находиться в различных состояниях, каждое из которых соответствует определенному энергетическому уровню Е , представляющему дискретную величину. При переходе с более высокого энергетического уровня на более низкий возникает электромагнитное излучение, и наоборот, при переходе на более высокий уровень излучение поглощается. Частота излучения, т.е. число колебаний в секунду, определяется формулой:

f = (E 2 – E 1)/h ,

где E 2 – начальная энергия, E 1 – конечная энергия и h – постоянная Планка.

Многие квантовые переходы дают очень высокую частоту, примерно 5ґ 10 14 Гц, и возникающее излучение находится в диапазоне видимого света. Для создания атомного (квантового) генератора необходимо было найти такой атомный (или молекулярный) переход, частота которого могла бы быть воспроизведена с помощью электронной техники. Микроволновые устройства, подобные используемым в радиолокаторе, способны генерировать частоты порядка 10 10 (10 млрд.) Гц.

Первые точные атомные часы, в которых использовался цезий, были разработаны Л.Эссеном и Дж.В.Л.Парри в Национальной физической лаборатории в Теддингтоне (Великобритания) в июне 1955. Атом цезия может существовать в двух состояниях, причем в каждом из них он притягивается или одним, или другим полюсом магнита. Атомы, выходящие из нагревательной установки, проходят по трубке, расположенной между полюсами магнита «А». Атомы, находящиеся в состоянии, условно обозначаемом 1, отклоняются магнитом и ударяются о стенки трубки, тогда как атомы, находящиеся в состоянии 2, отклоняются в другую сторону таким образом, что проходят вдоль трубки через электромагнитное поле, частота колебаний которого соответствует радиочастоте, и затем направляются ко второму магниту «В». Если радиочастота подобрана правильно, то атомы, переходя в состояние 1, отклоняются магнитом «В» и улавливаются детектором. В противном случае атомы сохраняют состояние 2 и отклоняются в сторону от детектора. Частота электромагнитного поля изменяется до тех пор, пока счетчик, присоединенный к детектору, не покажет, что генерируется нужная частота. Резонансная частота, генерируемая атомом цезия (133 Cs), составляет 9 192 631 770 ± 20 колебаний в секунду (эфемеридного времени). Эта величина называется цезиевым эталоном.

Преимущество атомного генератора перед кварцевым пьезоэлектрическим заключается в том, что его частота не меняется со временем. Однако он не может непрерывно функционировать столь же долго, как кварцевые часы. Поэтому принято комбинировать в одних часах пьезоэлектрический кварцевый генератор с атомным; частота кварцевого генератора время от времени проверяется по атомному генератору.

Для создания генератора используется также изменение состояния молекул аммиака NH 3 . В устройстве, называемом «мазер» (микроволновом квантовом генераторе), внутри полого резонатора генерируются колебания в радиодиапазоне с почти постоянной частотой. Молекулы аммиака могут находиться в одном из двух энергетических состояний, различно реагирующих на электрический заряд определенного знака. Пучок молекул проходит в поле электрически заряженной пластины; при этом те из них, которые находятся на более высоком энергетическом уровне, под воздействием поля направляются в небольшое входное отверстие, ведущее в полый резонатор, а молекулы, находящиеся на более низком уровне, отклоняются в сторону. Часть молекул, попавших в резонатор, переходит на более низкий энергетический уровень, испуская при этом излучение, на частоту которого оказывает воздействие конструкция резонатора. По результатам экспериментов в Невшательской обсерватории в Швейцарии, полученная частота составила 22 789 421 730 Гц (в качестве эталона при этом использовалась резонансная частота цезия). Проводившееся в международных масштабах с помощью радио сопоставление частот колебаний, измеренных для пучка атомов цезия показало, что величина расхождений частот, получаемых в установках различной конструкции, составляет примерно две миллиардных. Квантовый генератор, в котором используется цезий или рубидий, известен под названием газонаполненного фотоэлемента. В качестве квантового генератора частот (мазера) применяется также водород. Изобретение (квантовых) атомных часов в значительной степени способствовало исследованиям изменений скорости вращения Земли и разработке общей теории относительности.

Секунда.

Использование атомной секунды в качестве эталонной единицы времени было принято 12-й Международной конференцией по мерам и весам в Париже в 1964. Она определяется на основе цезиевого эталона. С помощью электронных устройств осуществляется подсчет колебаний цезиевого генератора, и время, за которое происходит 9 192 631 770 колебаний, принимается за эталон секунды.

Гравитационное (или эфемеридное) время и атомное время. Эфемеридное время устанавливается по данным астрономических наблюдений и подчиняется законам гравитационного взаимодействия небесных тел. Определение времени с помощью квантовых стандартов частоты основано на электрических и ядерных взаимодействиях внутри атома. Вполне возможно несовпадение масштабов атомного и гравитационного времени. В таком случае частота колебаний, генерируемых атомом цезия, будет изменяться по отношению к секунде эфемеридного времени в течение года, и это изменение нельзя отнести за счет ошибки наблюдения.

Радиоактивный распад.

Хорошо известно, что атомы некоторых, т.н. радиоактивных, элементов самопроизвольно распадаются. В качестве показателя скорости распада используется «период полураспада» – промежуток времени, за который число радиоактивных атомов данного вещества уменьшается вдвое. Радиоактивный распад также может служить мерой времени – для этого достаточно подсчитать, какая часть от общего числа атомов подверглась распаду. По содержанию радиоактивных изотопов урана оценивается возраст горных пород в пределах нескольких миллиардов лет. Большое значение имеет радиоактивный изотоп углерода 14 С, образующийся под воздействием космического излучения. По содержанию этого изотопа, имеющего период полураспада 5568 лет, можно датировать образцы возрастом несколько более 10 тыс. лет. В частности, его используют для определения возраста объектов, связанных с деятельностью человека, как в историческое, так и в доисторическое время.

Вращение Земли.

Как предполагали астрономы, период вращения Земли вокруг своей оси изменяется во времени. Поэтому оказалось, что течение времени, отсчет которого ведется на основе вращения Земли, иногда бывает ускоренным, а иногда – замедленным по сравнению с тем, которое определяется по орбитальному движению Земли, Луны и других планет. За последние 200 лет ошибка в отсчете времени на основе суточного вращения Земли по сравнению с «идеальными часами» достигала 30 с.

За сутки отклонение составляет несколько тысячных долей секунды, однако за год накапливается ошибка в 1–2 с. Различают три типа изменения скорости вращения Земли: вековые, являющиеся следствием приливов под воздействием лунного притяжения и приводящие к увеличению продолжительности суток примерно на 0,001 с в столетие; малые скачкообразные изменения продолжительности суток, причины которых точно не установлены, удлиняющие или укорачивающие сутки на несколько тысячных долей секунды, причем такая аномальная продолжительность может сохраняться на протяжении 5–10 лет; наконец, отмечаются периодические изменения, главным образом с периодом в один год.

Все мы помним, как во времена СССР все республики с замиранием сердца ждали боя курантов в новогоднюю ночь. Сегодня эти часы отбивают время исключительно для России, однако, это не лишает их особой магии и привлекательности.

Кремлевская башня (еще называется Спасской), на которой установлены эти часы, была построена еще в 1491 году. В 1625 году она была модернизирована - именно тогда часовое устройство и было установлено на башню. В 1626 году из-за пожара часы были уничтожены, поэтому пришлось построить аналогичные. В 1706 году снова часы заменили на новые. В этот раз они были привезены лично Петром Первым. Однако они также пострадали из-за пожара.

Последняя замена циферблата произошла в прошлом веке после попадания в них снаряда в 1917 году. Мало кто знает, но изначально башня называлась Фроловской, так как ее создатель (итальянец Пьетро Антонио Солари) выбирал название для своего строения, исходя из находящейся поблизости церкви Фрола и Лавра. Только в 1658 году было принято решение переименовать башню в Спасскую. Это было зафиксировано в царском указе, а основанием для переименования стало расположение иконы Спаса Нерукотворного над воротами.

Сегодня абсолютная точность времени достигается при помощи подключения часов к контрольным часам. Для этого под землей проведен специальный кабель.

Куранты способны воспроизводить множество мелодий. До 1932 года ежедневно в обед воспроизводился "Интернационал", сегодня основной мотив - гимн Российской Федерации.

Доступ к самому циферблату разрешен ограниченному кругу лиц. При этом в башне нет лифта - подниматься приходится по старинной винтовой лестнице. Длина каждой из стрелок составляет 3 метра, а размер всевозможных шестеренок и колес превышает человеческий рост. Общий вес конструкции превышает 25 тонн.