Как температура влияет на растения. Влияние высоких температур на растения. Действие экстремальных температур на растения


Повреждение растений холодом и морозом. В экологии растений принято различать действие холода (низкой положительной температуры) и мороза (отрицательных температур). Негативное нлияние холода зависит от диапазона понижения температур и продолжительности их воздействия. Уже неэкстремальные низкие температуры неблагоприятно сказываются на растениях, поскольку тормозят основные физиологические процессы (фотосинтез, транспирацию, водообмен и т.д.), снижают энергетическую эффективность дыхания, изменяют функциональную активность мембран, приводят к преобладанию в обмене веществ гидролитических реакций. Внешне повреждение холодом сопровождается потерей листьями тургора и изменением их окраски из-за разрушения хлорофилла. Резко замедляются рост и развитие. Так, листья огурца (Cucumis sativus) теряют тургор при 3 °С на 3-й день, растение завядает и гибнет из-за нарушения доставки воды. Но и в насыщенной водяными парами среде пониженные температуры неблагоприятно влияют на обмен веществ растений. У ряда видов усиливается распад белков и накапливаются растворимые формы азота.
Основная причина повреждающего действия низкой положительной температуры на теплолюбивые растения - нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в гель. В результате, с одной стороны, повышается проницаемость мембран для ионов, а с другой - увеличивается энергия активации ферментов, связанных с мембраной. Скорость реакций, катализируемых мембранными ферментами, снижается после фазового перехода быстрее, чем скорость реакций, связанных с растворимыми энзимами. Все это приводит к неблагоприятным сдвигам в обмене веществ, резкому возрастанию количества эндогенных токсикантов, а при длительном действии низкой температуры - к гибели растения (В. В. Полевой, 1989). Так, при снижении температуры до нескольких градусов выше О °С гибнут многие растения тропического и субтропического происхождения. Отмирание их идет медленнее, чем при вымерзании, и является следствием расстройства биохимических и физиологических процессов в организме, оказавшемся в несвойственной обстановке.
Выделено множество факторов, губительно действующих на растения при отрицательных температурах: потеря тепла, разрыв сосудов, обезвоживание, льдообразование, повышенные кислотность и концентрация клеточного сока и т.п. Гибель клеток от мороза обычно связывают с дезорганизацией обмена белков и нуклеиновых кислот, а также с не менее важным нарушением проницаемости мембран и прекращением тока ассимилятов. В результате процессы распада начинают преобладать над процессами синтеза, накапливаются яды, нарушается структура цитоплазмы.
Многие растения, не повреждаясь при температурах выше О °С, I ибнут от образования льда в тканях. В обводненных незакаленных органах лед может образовываться в протопластах, межклетниках и клеточных стенках. Г. А. Самыгин (1974) выделил три тина вымерзания клеток, зависящие от физиологического состояния организма и его готовности к перезимовке. В первом случае клетки гибнут после быстрого образования льда сначала в цитоплазме, а потом в вакуоле. Второй тип вымерзания связан с обезвоживанием и деформацией клетки при образовании межклеточного льда (рис. 7.17). Третий тип гибели клеток наблюдается при сочетании межклеточного и внутриклеточного льдообразования.
При замерзании, как и в результате засухи, протопласты отдают воду, сжимаются и содержание растворенных в них солей и органических кислот возрастает до токсичных концентраций. Это вызывает инактивацию ферментных систем, участвующих в фосфорилировании и синтезе АТФ. Перемещение воды и замерзание продолжаются до тех пор, пока не установится равновесие сосущих сил между льдом и водой протопласта. А оно зависит от температуры: при температуре -5 °С равновесие наступает при 60 бар, а при -10 °С уже при 120 бар (В.Лархер, 1978).
При длительном действии мороза кристаллы льда вырастают до значительных размеров и могут сжимать клетки и повреждать плазмалемму. Процесс образования льда зависит от скорости понижения температуры. Если вымерзание идет медленно, лед об-

Рис. 7.17. Схема повреждений клетки, вызванных внеклеточным льдообразованием и оттаиванием (по Дж. П.Палту, П.Х.Ли, 1983)

разуется вне клеток, и при оттаивании они остаются живыми. Когда же температура падает быстро, вода не успевает проникнуть сквозь клеточную стенку и замерзает между нею и протопластом. Это вызывает разрушение периферических слоев цитоплазмы, а потом и необратимое повреждение клетки. При очень быстром падении температуры вода не успевает выйти из протопласта и кристаллы льда быстро распространяются по клетке. Следовательно, клетки быстро замерзают в том случае, если вода из них не успела оттечь. Поэтому важен быстрый транспорт ее в межклетники, чему способствует поддержание высокой проницаемости мембран, связанное с большим содержанием в их составе ненасыщенных жирных кислот (В. В. Полевой, 1989). У закаленных растений при отрицательных температурах мембраны «не застывают», сохраняя функциональную активность. Морозоустойчивость клетки также повышается, если вода прочно связана со структурами цитоплазмы.
Мороз может сильно нарушать структуру мембран. Мембранные белки дегидратируются и денатурируют, что инактивирует важные системы активного транспорта сахаров и ионов. Свертывание белков под действием мороза особенно характерно для южных растений, отмирающих до образования льда. А морозный распад липидных компонентов мембран сопровождается гидролизом фосфолипидов и образованием фосфорной кислоты. В итоге поврежденные мембраны теряют полупроницаемость, потеря воды клетками усиливается, тургор падает, межклетники заполняются водой, и из клеток интенсивно вымываются необходимые ионы.
Мороз повреждает и пигментную систему растений. Причем действие температурного стресса зимой часто сочетается с повреждением ассимилирующих органов светом. Так, в хлоропластах хвои повреждается электрон-транспортная цепь, но эти повреждения обратимы. У зимующих растений увеличивается содержание каротиноидов, защищающих хлорофилл от повреждения светом. Сохранение пигментов и фотосинтеза важно для устойчивости растений и осенью, когда при низких положительных температурах синтезируются протекторные соединения, и для перезимовки растений. При отрицательных температурах у озимых злаков за счет фотосинтеза происходит частичная компенсация затрат на поддержание жизнеспособности в стрессовых условиях (Л. Г. Ко- сулина и др., 1993).
Мороз может вызвать и механические повреждения растительных организмов. В этом случае особенно страдают стволы деревьев и крупные ветви. Зимой при сильном ночном охлаждении ствол быстро теряет тепло. Кора и наружные слои древесины охлаждаются быстрее, чем внутренняя часть ствола, поэтому в них возникает значительное напряжение, которое при быстром изменении температуры приводит к вертикальному растрескиванию дерева.
Кроме того, возможны тангентальные трещины и отслойки коры. Морозобойные трещины при активной работе камбия закрываются, но если новые слои древесины образоваться не успевают, трещины распространяются по радиусу внутрь ствола. В них попадает инфекция, которая, проникая в соседние ткани, нарушает работу проводящей системы и может привести дерево к гибели.
Морозобойные повреждения возникают и днем. При длительных морозах, особенно в солнечную погоду, возвышающиеся над снегом части растений могут пересыхать от дисбаланса транспирации и поглощения воды из холодной почвы (имеет значение также сжатие клеток при обезвоживании и образовании льда, замораживание клеточного сока). У древесных растений в районах с солнечной зимой (Восточная Сибирь, Северный Кавказ, Крым и др.) даже отмечаются зимне-весенние «ожоги» на южной стороне ветвей и молодых незащищенных стволов. Ясными зимними и весенними днями у неопробковевших частей растений клетки нагреваются, теряют морозостойкость и не выдерживают последующих морозов. А в лесотундре морозобойные повреждения могут образовываться и летом во время заморозков. Особенно им подвержен молодой подрост. Его камбий быстро охлаждается, так как еще не сформировался достаточный теплоизолирующий слой коры, и поэтому невелика теплоемкость тонких стволов. Особенно опасны эти воздействия и середине лета, когда активность камбия максимальна (М.А. Гурская, С.Г. Шиятов, 2002).
Уплотнение и растрескивание замерзшей почвы приводит к механическому повреждению и разрыву корней. Так же может действовать и морозное «выпирание» растений, которое вызывается неравномерным замерзанием и расширением почвенной влаги. При этом возникают силы, выталкивающие растение из почвы. В результате выворачиваются дернины, оголяются и обрываются корни, вываливаются деревья. Суммируя данные о зимних повреждениях растений, кроме собственно холодостойкости и морозостойкости, отражающих способность переносить прямое действие низких температур, в экологии выделяют еще зимостойкость - способность к перенесению всех неблагоприятных зимних условий (замерзание, выпревание, выпирание и т.п.). При этом специальных морфологических приспособлений, защищающих только от холода, у растений нет и в холодных местообита ниях защита осуществляется от всего комплекса неблагоприятных условий (ветры, иссушение, холод и т.д.)
Холод воздействует на растение не только прямо (через термонару шения), но и косвенно, через физиологическую «зимнюю засуху». При зимнем интенсивном освещении и потеплении температура воздуха может превысить температуру почвы. Надземные части растений усилива ют транспирацию, а поглощение воды из холодной почвы замедлено.
В результате в растении повышается осмотическое давление, наступает водный дефицит. При длительных холодах и интенсивной инсоляции это может привести даже к летальным повреждениям. Иссушающее действие холода усугубляют усиливающие транспирацию зимние ветры. А уменьшает зимнее иссушение сокращение транспирирующей поверхности, что и происходит при осеннем сбрасывании листьев. Очень сильно транспирируют зимой зимне-зеленые растения. Р.Трен (1934) определил, что в окрестностях Гейдельберга безлистные побеги черники (Vaccinium myrtillus) транспирировали в три раза интенсивнее, чем хвоя елей (Picea) и сосен (Pinus). В 20 раз интенсивнее была транспирация вереска (Calluna vulgaris). А сохраняющиеся живыми до зимы на стенах домов побеги льнянки (Linaria cymbalaria) и Parietaria ramiflora испаряли в 30-50 раз интенсивнее древесных видов. В некоторых местообитаниях зимняя засуха может быть существенно ослаблена. Например, растения, находящиеся под снегом или в расселинах стен, значительно меньше расходуют влаги на транспирацию и во время оттепелей могут восполнять дефицит воды.

Выполнила: Галимова А.Р

Действие экстремальных температур на растения

В ходе эволюции растения довольно хорошо адаптировались к воздействию низких и высоких температур. Однако эти приспособления не столь совершенны, поэтому крайние экстремальные температуры могут вызвать те или иные повреждения и даже гибель растения. Диапазон температур, действующих в природе на растения, достаточно широк: от -77ºС до + 55°С, т.е. составляет 132°С. Наиболее благоприятными для жизни большинства наземных организмов являются температуры +15 - +30°С.

Высокие температуры

Жаростойкие - главным образом низшие растения, например, термофильные бактерии и сине-зеленые водоросли.

Эта группа организмов способна выдерживать повышение температуры до 75-90°С;

Устойчивость растений к низким температурам подразделяют на:

Холодостойкость;

Морозоустойчивость.

Холодостойкость растений

способность теплолюбивых растений переносить низкие положительные температуры. Теплолюбивые растения сильно страдают при положительных пониженных температурах. Внешними симптомами страдания растений являются увядание листьев, появление некротических пятен.

Морозоустойчивость

способность растений переносить отрицательные температуры. Двулетние и многолетние растения, растущие в умеренной полосе, периодически подвергаются воздействию низких отрицательных температур. Разные растения обладают неодинаковой устойчивостью к этому воздействию.

Морозоустойчивые растения

Влияние на растения низких температур

При быстром понижении температуры образование льда происходит внутри клетки При постепенном снижении температуры кристаллы льда образуются в первую очередь в межклетниках. Гибель клетки и организма в целом может происходить в результате того, что образовавшиеся в межклетниках кристаллы льда, оттягивая воду из клетки, вызывают ее обезвоживание и одновременно оказывают на цитоплазму механическое давление, повреждающее клеточные структуры. Это вызывает ряд последствий – потерю тургора, повышение концентрации клеточного сока, резкое уменьшение объема клеток, сдвиг значений рН в неблагоприятную сторону.

Влияние на растения низких температур

Плазмалемма теряет полупроницаемость. Нарушается работа ферментов, локализованных на мембранах хлоропластов и митохондрий, и связанные с ними процессы окислительного и фотосинтетического фосфорилирования. Интенсивность фотосинтеза снижается, уменьшается отток ассимилятов. Именно изменение свойств мембран является первой причиной повреждения клеток. В некоторых случаях повреждение мембран наступает при оттаивании. Таким образом, если клетка не прошла процесса закаливания, цитоплазма свертывается из-за совместного влияния обезвоживания и механического давления образовавшихся в межклетниках кристаллов льда.

Адаптации растений к отрицательным температурам

Существуют два типа приспособлений к действию отрицательных температур:

уход от повреждающего действия фактора (пассивная адаптация)

повышение выживаемости (активная адаптация).

Температура является важнейшим фактором, определяющим возможности и сроки возделывания сельскохозяйственных культур.

Протекающие в почве биологические и химические процессы трансформации элементов питания находятся в прямой зависимости от температурного режима. Теплообеспеченность посевов характеризуется суммой среднесуточных температур воздуха выше 10°С за период вегетации. Как высокие, так и низкие температуры нарушают течение биохимических процессов в клетках, и тем самым могут взывать в них необратимые изменения, приводящие к прекращению роста и гибели растений. Повышение температуры до 25-28°С увеличивает активность фотосинтеза, а при дальнейшем ее росте начинает заметно преобладать дыхание над фотосинтезом, что приводит к снижению массы растений. Поэтому большинство сельскохозяйственных культур при температуре выше 30°С, растрачивая углеводы на дыхание не дают, как правило, прироста урожая. Снижение температуры окружающей среды с 25 до 10°С уменьшает интенсивность фотосинтеза и рост растений в 4-5 раз. Температура, при которой образование продуктов фотосинтеза равна их расходу на дыхание называется компенсационной точкой.

Наиболее высокая интенсивность фотосинтеза у растений умеренного климата наблюдается в интервале 24-26°С. Для большинства полевых сельскохозяйственных культур оптимальная температура днем составляет 25°С, ночью — 16-18°С. При повышении температуры до 35-40°С фотосинтез прекращается в результате нарушения биохимических процессов и чрезмерной транспирации (Кузнецов, Дмитриева, 2006). Существенное отклонение температуры от оптимальной в сторону повышения или понижения заметно снижает ферментативную активность в клетках растений, интенсивность фотосинтеза и поступление элементов питания в растения.

Температура оказывает большое влияние на рост корней. Низкие (< 5°С) и высокие (> 30°С) температуры почвы способствуют поверхностному расположению корней, существенно снижает их рост и активность. У большинства растений наиболее мощная разветвленная корневая система формируется при температуре почвы 20-25°С.

При определении срока внесения удобрений важно учитывать существенное влияние температуры почвы на поступление элементов питания в растения. Установлено, что при температуре ниже 12°С значительно ухудшается использование растениями фосфора, калия и микроэлементов из почвы и удобрений, а при температуре ниже 8°С заметно снижается также потребление минерального азота. Для большинства сельскохозяйственных культур температура 5-6°С является критической для поступления основных элементов питания в растения.

Теплообеспеченностью вегетационного периода в значительной мере обусловливается структура посевных площадей и возможность выращивания более продуктивных позднеспелых культур, которые продолжительное время могут использовать солнечную энергию на формирование урожая или проводить повторные посевы после раноубираемых культур.

В условиях Нечерноземной зоны России наблюдается прямая зависимость продуктивности сельскохозяйственных культур от суммы температур. В лесостепной и степной зонах, в орошаемых условиях какой-либо достоверной связи между количеством положительных температур и урожаями сельскохозяйственных культур не установлено. В центральных и южных регионах страны повышение или понижение температуры на 2-3 °С не оказывает существенное влияние на продуктивность растений.

Большое влияние оказывает также температура на жизнедеятельность почвенной микрофлоры, обусловливающей минеральное питание растений. Установлено, что наибольшая интенсивность аммонификации органических остатков в почве под действием микроорганизмов происходит при температуре 26-30°С и влажности почвы 70-80% от НВ. Отклонение температуры или влажности от оптимальных значений заметно снижает интенсивность микробиологических процессов в почве.

Большое влияние на интенсивность фотосинтеза и эффективность удобрений оказывает влагообеспеченность растений. От тургорного состояния растений зависит степень раскрытия устьиц, скорость поступления в листья СО 2 и выделение О 2 . В условиях засухи и чрезмерной влажности устица обычно закрываются и ассимиляция углекислоты (фотосинтез) прекращается. Наиболее высокая интенсивность фотосинтеза наблюдается при небольшом дефиците воды в листе (10-15% от полного насыщения), когда устица максимально раскрыты. Только в условиях оптимального водного режима корневая система растений проявляет наиболее высокую активность потребления элементов питания из почвенного раствора. Дефицит влаги в почве приводит к снижению скорости передвижения воды и элементов питания по ксилеме к листьям, интенсивности фотосинтеза и уменьшению биомассы растений.

Важно не только количество осадков, но и динамика их распределения в течение вегетационного периода применительно к отдельным культурам. Продуктивность сельскохозяйственных культур в значительной мере обусловливается обеспеченностью влагой в наиболее ответственные фазы роста и развития растений.

Для Нечерноземной зоны установлена темная корреляционная связь между урожайностью и количеством осадков в конце мая — начале июня для зерновых, в июле — августе для картофеля, кукурузы, корнеплодов и овощных культур. Недостаток влаги в эти периоды значительно снижает урожай растений и эффективность удобрений.

Применение азотных и фосфорно-калийных удобрений значительно увеличивает дефицит влаги, поскольку пропорционально повышению урожайности надземной массы возрастает и водопотребление. Установлено, что на удобренных полях иссушающее действие растений на почву начинает проявляться раньше и на большую глубину, нежели на не удобренных. Поэтому при дефиците влаги удобренные поля засевают, как можно раньше, чтобы к моменту наступления засухи и иссушения верхнего слоя почвы корни достигли нижних более увлажненных горизонтов. Наиболее важным мероприятием влагонакопления в степных районах является снегозадержание, раннее боронование для закрытия влаги и ранний сев.

В лесостепной и сухостепной зоне влагообеспеченность является одним из важнейших факторов продуктивности сельскохозяйственных культур.

В зонах достаточного и избыточного увлажнения промывной водный режим оказывает большое влияние на обеспеченность растений элементами питания, поскольку с нисходящим током воды из корнеобитаемого слоя почвы выносятся значительное количество азота, кальция, магния и растворимых гумусовых веществ. Такой режим создается, как правило, осенью и ранней весной.

Большое влияние на урожайность сельскохозяйственных культур, эффективность удобрений, строки и агротехнические приемы полевых работ оказывает экспозиция и рельеф полей, поскольку склоны разной экспозиции и крутизны значительно отличаются содержанием в почве гумуса, элементов питания, тепловым и водным режимами и отзывчивостью сельскохозяйственных растений на удобрения. Почвы северных и северо-восточных склонов, как правило, более гумусированы, лучше обеспечены влагой, выше снежный покров, позже оттаивают по сравнению с южными склонами и, как правило, более тяжелого гранулометрического состава. Почвы южных и юго-западных склонов более теплые по сравнению с северными, раньше оттаивают, характеризуются интенсивным паводковым стоком талых и ливневых вод, отсюда, как правило, более эродированы, содержат меньше илистых частиц. В почвах южных склонах минерализация пожнивно-корневых остатков и органических удобрений протекает более интенсивно, поэтому они менее гумусированы. Чем выше снежный покров, тем меньше глубина промерзания почвы, она лучше впитывает весенние талые воды и паводки меньше разрушают почву.

Характеристика почв разной экспозиции важно учитывать при планировании сроков полевых работ и потребности в технике для несения удобрений, поскольку после завершения полевых работ на южных склонах ее используют на полях северной экспозиции.

Несмотря на большую зависимость роста и развития растений от их обеспеченности влагой и теплом, определяющая роль в формировании урожаев сельскохозяйственных культур в Нечерноземной зоне и многих других регионах принадлежит плодородию почвы и применению удобрений.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Влияние температуры воздуха

Процессы жизнедеятельности у каждого вида растений осуществляются при определенном тепловом режиме, который зависит от качества тепла и продолжительности его воздействия.

Разные растения нуждаются в разном количестве теплоты и обладают различной способностью переносить отклонения (как в сторону понижения, так и повышения) температуры от оптимальной.

Оптимальная температура - наиболее благоприятная температура для определенного вида растения в определенной стадии развития.

Максимальная и минимальная температуры, не нарушающие нормального развития растений, определяют пределы температур, допустимых для их выращивания в соответствующих условиях. Понижение температуры приводит к замедлению всех процессов, сопровождается ослаблением фотосинтеза, торможением образования органических веществ, дыхания, транспирации. Повышение температуры активизирует эти процессы.

Отмечено, что интенсивность фотосинтеза растет с повышением температуры и достигает максимума в области 15-20℃ для растений умеренных широт и 25-30℃ для тропических и субтропических растений. Суточная температура осенью в интерьерах почти не опускается ниже 13℃. Зимой она находится в пределах 15-21℃. Весной колебания температур возрастают. Она достигает 18-25℃. В летнее время температура держится относительно высокой в течение суток и составляет 22-28℃. Как видно, температура воздуха в помещениях почти укладывается в диапазон температур, необходимых для протекания процесса фотосинтеза на протяжении всего года. Температура, таким образом, не является столь лимитирующим фактором в комнатных условиях, как интенсивность освещения.



В зимний период комнатные питомцы нормально себя чувствуют при более низких температурах, т.к. многие из них находятся в состоянии покоя, а у других ростовые процессы замедляются либо временно прекращаются. Поэтому потребность в тепле снижается по сравнению с летней.

Влияние света на рост растений – фотоморфогенез. Влияние красного и дальнего красного света на рост растений

Фотоморфогенез - это процессы, происходящие в растении под влиянием света различного спектрального состава и интенсивности. В них свет выступает не как первичный источник энергии, а как сигнальное средство, регулирующее процессы роста и развития растения. Можно провести некую аналогию с уличным светофором , автоматически регулирующим дорожное движение. Только для управления природа выбрала не "красный - желтый -зеленый", а другой набор цветов: "синий - красный - дальний красный".

И первое проявление фотоморфогенеза возникает в момент прорастания семени.
Про строение семени и особенности прорастания я уже рассказывал в статье про рассаду . Но там были опущены подробности, связанные с сигнальным действием света.Восполним же этот пробел.

Итак, семя проснулось от спячки и начало прорастать, находясь при этом под слоем почвогрунта, т.е в темноте . Замечу сразу, что мелкие семена, посеянные поверхностно и не присыпанные ничем, тоже прорастают в темноте ночью.
Кстати, по моим наблюдениям, вообще вся раасада, стоящая в светлом месте, прорастает ночью и увидеть массовые всходы можно утром.
Но вернемся к нашему несчастному проклюнувшемуся семени. Проблема заключается в том, что даже появившись на поверхность почвы, росток об этом не знает и продолжает активно расти, тянуться к свету, к жизни, пока не получит специального сигнала : стоп , можно дальше не спешить, ты уже на свободе и будешь жить. (Мне кажется, люди не сами придумали красный стоп-сигнал для водителей, а украли его у природы...:-).
И такой синал он получает не от воздуха, не от влаги, не от механического воздействия, а от кратковременного светового излучения, содержащего красную часть спектра.
А до получения такого сигнала проросток находится в так называемом этиолированном состоянии. В котором он имеет бледный вид и крючковатую согбенную форму. Крючок - это вышедший наружу эпикотиль или гипокотиль, нужный для защиты почечки (точки роста) при продирании через тернии к звездам, и он сохранится, если рост продолжится в темноте и растение будет оставаться в этом этиолированном состоянии.

Прорастание

Свет играет чрезвычайно важную роль в развитии растений. Изменения морфологии растения под воздействием светового излучения называется фотоморфогенезом. После прорастания семени сквозь грунт первые лучи солнца вызывают радикальные изменения у нового растения.

Известно, что под воздействием красного света процесс прорастания семян активизируется, а под воздействием дальнего красного света подавляется. Синий свет также подавляет прорастание. Такая реакция характерна для видов с мелкими семенами, так как у мелких семян нет достаточного запаса питательных веществ, чтобы обеспечить рост в темноте при прохождении толщи земли. Мелкие семена прорастают только под воздействием красного света, пропускаемого тонким слоем земли, при этом достаточно всего лишь кратковременного облучения - 5-10 минут в сутки. Увеличение толщины почвенного слоя приводит к обогащению спектра дальним красным светом, который подавляет прорастание семени. У видов растений с крупными семенами, содержащими достаточный запас питательных веществ, для индукции прорастания свет не требуется.

В норме из семечка сначала прорастает корешок, а затем появляется побег. После этого, по мере увеличения ростка (как правило, под воздействием света), развиваются вторичные корни и побеги. Такой скоординированный прогресс является ранним проявлением феномена взаимосвязанного роста, когда развитие корневой системы влияет на рост побега и наоборот. В большей степени этими процессами управляют гормоны.

В отсутствие света росток пребывает в так называемом этиолированном состоянии, при этом имеет бледный вид и крючковатую форму. Крючок - это вышедший наружу эпикотиль или гипокотиль, нужный для защиты точки роста при прорастании сквозь почву, и он сохранится, если рост продолжится в темноте.

Красный свет

Почему это происходит - еще немного теории. Оказывается, кроме хлорофилла, в любом растении есть еще один замечательный пигмент, имеющий название - фитохром . (Пигмент - это белок, имеющий избирательную чувствительность к определенному участку спектра белого света).
Особенность фитохрома заключается в том, что он может принимать две формы с разными свойствами под воздействием красного света (660 нм) и дальнего красного света (730 нм), т.е. он обладает способностью к фотопревращению . Причем поочередное кратковременное освещение тем или другим красным светом аналогично манипулированию любым выключателем, имеющим положение "ВКЛ-ВЫКЛ", т.е. всегда сохраняется результат последнего воздействия.
Это свойство фитохрома обеспечивает слежение за временем суток (утро-вечер), управляя периодичностью жизнедеятельности растения. Более того, светолюбивость или теневыносливость того или иного растения также зависит от особенностей имеющихся в нем фитохромов. И, наконец, самое главное - цветением растений также управляет... фитохром ! Но об этом - в следующий раз.

А пока вернемся все же к нашему проростку (ну почему ему так не везет...) Фитохром, в отличие от хлорофилла, есть не только в листьях, но и в семени . Участие фитохрома в процессе прорастания семян для некоторых видов растений таково: просто красный свет стимулирует процессы прорастания семян, а дальний красный - подавляет прорастание семян. (Возможно, что именно поэтому семена и прорастают ночью). Хотя, это и не является закономерностью для всех растений. Но в любом случае, красный спект более полезен (он стимулирует), чем дальний красный, который подавляет активность жизненных процессов.

Но предположим, что нашему семечку повезло и оно проросло, появившись на поверхности в этиолированном виде. Теперь достаточно кратковременного освещения проростка, чтобы запустить процесс деэтиоляции : скорость роста стебля снижается, крючок распрямляется, начинается синтез хлорофилла, семядоли начинают зеленеть.
И все это, благодаря красному свету. В солнечном дневном свете обычных красных лучей больше, чем дальних красных, поэтому днем высока активность растения, а ночью оно переходит в неактивную форму.

Как же различить эти два близких участка спектра "на глаз" для источника искуственного освещения? Если вспомнить, что красный участок граничит с инфракрасным, т.е. тепловым излучением, то можно предположить, что чем теплее "на ощупь" излучение, тем больше в нем инфракрасных лучей, а значит и дальнего красного света. Подставьте руку под обычную лампочку накаливания или под люминесцентную лампу дневного света - и почувствуете разницу.

Определение холодоустойчивости растений

Понятие низкотемпературного стресса (cold shook) включает в себя всю совокупность ответных реакций растений на действие холода или мороза, причем реакций, соответствующих генотипу растений и проявляющихся на разных уровнях организации растительного организма от молекулярного до организменного.

Холодоустойчивость – способность теплолюбивых растений переносить действие низких положительных температур. Холодостойкими называются растения, которые не повреждаются и не снижают своей продуктивности при температуре от 0 до +10°С.

Для большинства сельскохозяйственных культур низкие положительные температуры почти безвредны. Отдельные органы теплолюбивых растений обладают разной устойчивостью к холоду. У кукурузы и гречихи быстрее всего отмирают стебли, у риса менее устойчивы листья, у сои сначала повреждаются черешки, а затем листовые пластинки, у арахиса наиболее чувствительна к холоду корневая система.

При воздействии холода происходит потеря тургора листьями вследствие нарушения доставки воды к транспортирующим органам, что ведет к уменьшению содержания внутриклеточной воды. Усиливаются гидролитические процессы, в результате накапливаются небелковый азот (пролин и другие азотистые соединения), моносахара. Увеличиваются гетерогенность и количество белка, особенно низкомолекулярного (26, 32 кД).

Повышается проницаемость мембран. Эта реакция относится к первичным механизмам воздействия холода. Изменение состояния мембран при низкой температуре в значительной мере связано с потерей ионов кальция. У озимой пшеницы, если воздействие не слишком сильное, мембраны клеток теряют ионы кальция, проницаемость увеличивается; различные ионы, в первую очередь калия, а также органические кислоты и сахара из цитоплазмы выходят в клеточную стенку или межклетники. Ионы кальция тоже выходят в клеточную стенку, но повышается их концентрация и в цитоплазме, при этом активируется H+-АТФ-аза. Активный транспорт протонов запускает вторичный активный транспорт, и ионы калия возвращаются в клетку. В результате увеличивается поглощение воды и тех веществ, которые вышли из клетки, т.е. клеточный сок из экстраклеточного пространства входит в нее, что ведет к восстановлению ее состояния после повреждения (рис. 24а).

При действии более низкой температуры потеря мембранами ионов кальция очень велика. В результате сильного воздействия количество ионов кальция в цитоплазме увеличивается, и мембранные структуры нарушаются, также как и функции мембранносвязанных энзимов. H+-АТФ-аза инактивируется, а фосфолипиды, наоборот, активируются, что вызывает утечку ионов и стимулирует деградацию мембранных липидов. В этом случае повреждения становятся необратимыми.



Изменение проницаемости мембран связано также со сдвигами в жирнокислотных компонентах: насыщенные жирные кислоты из жидкокристаллического состояния переходят в состояние геля раньше, чем ненасыщенные. Поэтому чем больше в мембране насыщенных жирных кислот, тем она жестче, т.е. менее лабильна. При увеличении уровня ненасыщенных жирных кислот удавалось снизить чувствительность к понижению температуры.

Дезинтеграции мембран способствует и увеличение содержания свободных радикалов, свидетельствующее об усилении перекисного окисления липидов (ПОЛ). Так, например, у риса при 2ºС снижалась активность в тканях антиоксидантного фермента СОД и возрастало содержание малонового диальдегида (МДА) – конечного продукта ПОЛ. При обработке токоферолом количество МДА убывало.

Нарушение целостности мембран ведет к распаду клеточных структур: митохондрии и хлоропласты разбухают, в них уменьшается число крист и тилакоидов, появляются вакуоли, ЭПР образует концентрические круги, в том числе и из тонопласта внутри вакуоли. Это неспецифические изменения.

Вследствие дезинтеграции тилакоидных мембран хлоропластов нарушается фотосинтез, что касается и ЭТЦ, и ферментов цикла Кальвина.

Повреждение процесса дыхания также наблюдаются при холодовом воздействии, снижение энергетической эффективности связано с дополнительными затратами на поддержание обмена веществ. Возрастает активность альтернативного пути дыхания. В некоторых случаях, например у ароидных, интенсификация этого пути способствует повышению в холодную погоду температуры цветов, что необходимо для испарения эфирных масел, привлекающих насекомых. Изменяется и соотношение путей дыхания в пользу пентозофосфатного пути.

У теплолюбивых растений полное ингибирование фотосинтеза наступает при 0°С, т.к. происходит нарушение мембран хлоропластов и разобщение транспорта электронов и фотосинтетического фосфорилирования. У нехолодостойких сортов кукурузы через 20ч после действия температуры +30С происходит распад хлоропластов и разрушение пигментов. У холодостойких гибридов, например кукурузы действие температуры +3°С не влияет на состав пигментов и структуру хлоропластов.

Влияние температуры на фотосинтез зависит от освещенности. Образование хлорофилла в листьях огурца при закаливающей температуре (+15°С) ингибируется меньше при более слабой освещенности. Тормозится рост, изменяется баланс фитогормонов – возрастает содержание АБК (преимущественно у устойчивых сортов и видов), а ауксина –убывает. Понижение температуры ведет к изменениям и в транспортных процессах: поглощение NO3 ослабевает, а NH4 усиливается, особенно у приспособленных растений. Самым уязвимым при действии низкой температуры оказывается транспорт NO3 из корней в листья.

Продолжительное действие низких температур приводит растение к гибели. Основные причины отмирания растений состоят в необратимом увеличении проницаемости мембран, повреждения метаболизма клетки, накопления токсических веществ.