C 25 kvadratinių lygčių sprendimas. Internetinis skaičiuotuvas. Kvadratinės lygties sprendimas

Šiame straipsnyje apžvelgsime nepilnų kvadratinių lygčių sprendimą.

Bet pirmiausia pakartokime, kokios lygtys vadinamos kvadratinėmis. Vadinama ax 2 + bx + c = 0 formos lygtis, kur x yra kintamasis, o koeficientai a, b ir c yra kai kurie skaičiai, o a ≠ 0. kvadratas. Kaip matome, koeficientas x 2 nėra lygus nuliui, todėl koeficientai x arba laisvajam nariui gali būti lygūs nuliui, tokiu atveju gauname nepilną kvadratinę lygtį.

Yra trijų tipų nepilnos kvadratinės lygtys:

1) Jei b = 0, c ≠ 0, tai ax 2 + c = 0;

2) Jei b ≠ 0, c = 0, tai ax 2 + bx = 0;

3) Jei b = 0, c = 0, tada ax 2 = 0.

  • Išsiaiškinkime, kaip išspręsti ax 2 + c = 0 formos lygtys.

Norėdami išspręsti lygtį, laisvąjį terminą c perkeliame į dešinę lygties pusę, gauname

ax 2 = ‒s. Kadangi a ≠ 0, abi lygties puses padalijame iš a, tada x 2 = ‒c/a.

Jei ‒с/а > 0, tai lygtis turi dvi šaknis

x = ±√(–c/a) .

Jei ‒c/a< 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Pabandykime su pavyzdžiais suprasti, kaip išspręsti tokias lygtis.

1 pavyzdys. Išspręskite lygtį 2x 2 ‒ 32 = 0.

Atsakymas: x 1 = - 4, x 2 = 4.

2 pavyzdys. Išspręskite lygtį 2x 2 + 8 = 0.

Atsakymas: lygtis neturi sprendinių.

  • Išsiaiškinkime, kaip tai išspręsti ax 2 + bx = 0 formos lygtys.

Norėdami išspręsti lygtį ax 2 + bx = 0, suskaidykime ją faktoriais, tai yra, išimkime x iš skliaustų, gausime x(ax + b) = 0. sandauga lygi nuliui, jei bent vienas iš veiksnių yra lygus iki nulio. Tada arba x = 0, arba ax + b = 0. Išsprendę lygtį ax + b = 0, gauname ax = - b, iš kur x = - b/a. Formos ax 2 + bx = 0 lygtis visada turi dvi šaknis x 1 = 0 ir x 2 = ‒ b/a. Pažiūrėkite, kaip atrodo tokio tipo lygčių sprendimas diagramoje.

Patvirtinkime savo žinias konkrečiu pavyzdžiu.

3 pavyzdys. Išspręskite lygtį 3x 2 ‒ 12x = 0.

x(3x ‒ 12) = 0

x = 0 arba 3x – 12 = 0

Atsakymas: x 1 = 0, x 2 = 4.

  • Trečiojo tipo lygtys ax 2 = 0 sprendžiami labai paprastai.

Jei ax 2 = 0, tai x 2 = 0. Lygtis turi dvi lygias šaknis x 1 = 0, x 2 = 0.

Kad būtų aiškumo, pažiūrėkime į diagramą.

Spręsdami 4 pavyzdį įsitikinkime, kad tokio tipo lygtis galima išspręsti labai paprastai.

4 pavyzdys. Išspręskite lygtį 7x 2 = 0.

Atsakymas: x 1, 2 = 0.

Ne visada iš karto aišku, kokio tipo nepilną kvadratinę lygtį turime išspręsti. Apsvarstykite toliau pateiktą pavyzdį.

5 pavyzdys. Išspręskite lygtį

Padauginkite abi lygties puses iš Bendras vardiklis ty iki 30 m

Nupjaukime

5 (5 x 2 + 9) – 6 (4 x 2 – 9) = 90.

Atidarykime skliaustus

25 x 2 + 45 – 24 x 2 + 54 = 90.

Duokime panašiai

Perkelkime 99 iš kairės lygties pusės į dešinę, pakeisdami ženklą į priešingą

Atsakymas: nėra šaknų.

Pažiūrėjome, kaip sprendžiamos nepilnos kvadratinės lygtys. Tikiuosi, kad dabar jums nekils sunkumų atliekant tokias užduotis. Būkite atsargūs nustatydami nepilnos kvadratinės lygties tipą, tada jums pasiseks.

Jei turite klausimų šia tema, registruokitės į mano pamokas, kartu išspręsime iškilusias problemas.

svetainėje, kopijuojant visą medžiagą ar jos dalį, būtina nuoroda į šaltinį.

Ši tema iš pradžių gali pasirodyti sudėtinga dėl daugybės ne tokių paprastų formulių. Ne tik pačios kvadratinės lygtys turi ilgus žymėjimus, bet ir šaknys randamos per diskriminantą. Iš viso gaunamos trys naujos formulės. Nelabai lengva prisiminti. Tai veikia tik po to bendras sprendimas tokias lygtis. Tada visos formulės įsimins pačios.

Bendras kvadratinės lygties vaizdas

Čia mes siūlome jų aiškų įrašymą, kai pirmiausia rašomas didžiausias laipsnis, o tada mažėjančia tvarka. Dažnai pasitaiko situacijų, kai sąlygos yra nesuderinamos. Tada geriau perrašyti lygtį kintamojo laipsnio mažėjimo tvarka.

Leiskite pristatyti kai kuriuos užrašus. Jie pateikiami toliau esančioje lentelėje.

Jei priimsime šiuos žymėjimus, visos kvadratinės lygtys bus sumažintos iki tokio žymėjimo.

Be to, koeficientas a ≠ 0. Ši formulė bus pažymėta numeriu vienas.

Kai pateikiama lygtis, neaišku, kiek šaknų bus atsakyme. Kadangi visada galimas vienas iš trijų variantų:

  • tirpalas turės dvi šaknis;
  • atsakymas bus vienas skaičius;
  • lygtis iš viso neturės šaknų.

O kol sprendimas nėra galutinai priimtas, sunku suprasti, koks variantas atsiras konkrečiu atveju.

Kvadratinių lygčių įrašų tipai

Užduotyse gali būti skirtingų įrašų. Jie ne visada atrodys kaip bendrosios kvadratinės lygties formulė. Kartais trūksta kai kurių terminų. Tai, kas buvo parašyta aukščiau, yra visa lygtis. Jei pašalinsite antrą ar trečią terminą, gausite ką nors kita. Šie įrašai dar vadinami kvadratinėmis lygtimis, tik nepilnais.

Be to, gali išnykti tik terminai su koeficientais „b“ ir „c“. Skaičius „a“ jokiomis aplinkybėmis negali būti lygus nuliui. Nes tokiu atveju formulė virsta tiesine lygtimi. Neišsamios lygčių formos formulės bus tokios:

Taigi, yra tik du tipai; be pilnųjų, yra ir nepilnų kvadratinių lygčių. Tegul pirmoji formulė yra du, o antroji - trys.

Diskriminantas ir šaknų skaičiaus priklausomybė nuo jo vertės

Norėdami apskaičiuoti lygties šaknis, turite žinoti šį skaičių. Jį visada galima apskaičiuoti, nesvarbu, kokia būtų kvadratinės lygties formulė. Norėdami apskaičiuoti diskriminantą, turite naudoti žemiau parašytą lygybę, kurios skaičius bus ketvirtas.

Pakeitę koeficientų reikšmes į šią formulę, galite gauti skaičius skirtingi ženklai. Jei atsakymas yra teigiamas, atsakymas į lygtį bus dvi skirtingos šaknys. Jei skaičius neigiamas, kvadratinės lygties šaknų nebus. Jei jis lygus nuliui, bus tik vienas atsakymas.

Kaip išspręsti pilną kvadratinę lygtį?

Tiesą sakant, šis klausimas jau pradėtas svarstyti. Nes pirmiausia reikia rasti diskriminantą. Nustačius, kad yra kvadratinės lygties šaknys ir žinomas jų skaičius, reikia naudoti kintamųjų formules. Jei yra dvi šaknys, tuomet reikia taikyti šią formulę.

Kadangi jame yra ženklas „±“, bus dvi reikšmės. Po kvadratinės šaknies ženklu esanti išraiška yra diskriminantas. Todėl formulę galima perrašyti kitaip.

Penkta formulė. Iš to paties įrašo aišku, kad jei diskriminantas yra lygus nuliui, tada abi šaknys įgis tas pačias reikšmes.

Jei kvadratinių lygčių sprendimas dar neišspręstas, prieš taikant diskriminacines ir kintamąsias formules geriau užsirašyti visų koeficientų reikšmes. Vėliau šis momentas nesukels sunkumų. Tačiau pačioje pradžioje kyla sumaištis.

Kaip išspręsti nepilną kvadratinę lygtį?

Čia viskas daug paprasčiau. Papildomų formulių net nereikia. O tų, kurie jau buvo užrašyti diskriminantui ir nežinomam, neprireiks.

Pirmiausia pasvarstykime nepilna lygtis antroje vietoje. Šioje lygybėje reikia iš skliaustų išimti nežinomą kiekį ir išspręsti tiesinę lygtį, kuri liks skliausteliuose. Atsakymas turės dvi šaknis. Pirmasis būtinai lygus nuliui, nes yra daugiklis, susidedantis iš paties kintamojo. Antrasis bus gautas sprendžiant tiesinę lygtį.

Neišsami lygtis numeris trys išsprendžiamas perkeliant skaičių iš kairės lygybės pusės į dešinę. Tada reikia padalyti iš koeficiento, nukreipto į nežinomybę. Belieka ištraukti kvadratinę šaknį ir nepamiršti du kartus užsirašyti priešingais ženklais.

Žemiau pateikiami keli žingsniai, kurie padės išmokti išspręsti visų rūšių lygybes, kurios virsta kvadratinėmis lygtimis. Jie padės mokiniui išvengti klaidų dėl neatidumo. Šie trūkumai gali lemti prastus pažymius studijuojant plačią temą „Kvadratinės lygtys (8 klasė). Vėliau šių veiksmų nereikės atlikti nuolat. Nes atsiras stabilus įgūdis.

  • Pirmiausia turite parašyti lygtį standartine forma. Tai yra, pirmiausia terminas su didžiausiu kintamojo laipsniu, o tada - be laipsnio, o paskutinis - tik skaičius.
  • Jei prieš koeficientą „a“ atsiranda minusas, pradedančiajam, studijuojančiam kvadratines lygtis, tai gali apsunkinti darbą. Geriau jo atsikratyti. Šiuo tikslu visa lygybė turi būti padauginta iš „-1“. Tai reiškia, kad visi terminai pakeis ženklą į priešingą.
  • Taip pat rekomenduojama atsikratyti frakcijų. Tiesiog padauginkite lygtį iš atitinkamo koeficiento, kad vardikliai panaikintų.

Pavyzdžiai

Būtina išspręsti šias kvadratines lygtis:

x 2 − 7x = 0;

15 − 2x − x 2 = 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1) (x+2).

Pirmoji lygtis: x 2 − 7x = 0. Ji yra nepilna, todėl išspręsta taip, kaip aprašyta formulėje numeris antroji.

Išėmus jį iš skliaustų, paaiškėja: x (x - 7) = 0.

Pirmoji šaknis įgauna reikšmę: x 1 = 0. Antroji bus rasta iš tiesinės lygties: x - 7 = 0. Nesunku pastebėti, kad x 2 = 7.

Antroji lygtis: 5x 2 + 30 = 0. Vėlgi nepilna. Tik ji išspręsta taip, kaip aprašyta trečiojoje formulėje.

Perkėlus 30 į dešinę lygties pusę: 5x 2 = 30. Dabar reikia padalyti iš 5. Pasirodo: x 2 = 6. Atsakymai bus skaičiai: x 1 = √6, x 2 = - √6.

Trečioji lygtis: 15 − 2x − x 2 = 0. Čia ir toliau kvadratinių lygčių sprendimas prasidės perrašant jas standartine forma: − x 2 − 2x + 15 = 0. Dabar atėjo laikas naudoti antrąją naudingų patarimų ir padauginkite viską iš minus vieno. Pasirodo x 2 + 2x - 15 = 0. Naudojant ketvirtąją formulę reikia apskaičiuoti diskriminantą: D = 2 2 - 4 * (- 15) = 4 + 60 = 64. Tai teigiamas skaičius. Iš to, kas pasakyta aukščiau, paaiškėja, kad lygtis turi dvi šaknis. Juos reikia apskaičiuoti naudojant penktąją formulę. Pasirodo, x = (-2 ± √64) / 2 = (-2 ± 8) / 2. Tada x 1 = 3, x 2 = - 5.

Ketvirtoji lygtis x 2 + 8 + 3x = 0 paverčiama taip: x 2 + 3x + 8 = 0. Jos diskriminantas lygus šiai reikšmei: -23. Kadangi šis skaičius yra neigiamas, atsakymas į šią užduotį bus toks: „Šaknų nėra“.

Penktąją lygtį 12x + x 2 + 36 = 0 reikia perrašyti taip: x 2 + 12x + 36 = 0. Pritaikius diskriminanto formulę, gaunamas skaičius nulis. Tai reiškia, kad jis turės vieną šaknį, būtent: x = -12/ (2 * 1) = -6.

Šeštoji lygtis (x+1) 2 + x + 1 = (x+1)(x+2) reikalauja transformacijų, kurios susideda iš to, kad reikia pateikti panašius terminus, pirmiausia atidarant skliaustus. Vietoj pirmosios bus tokia išraiška: x 2 + 2x + 1. Po lygybės pasirodys šis įrašas: x 2 + 3x + 2. Suskaičiavus panašius narius, lygtis bus tokia: x 2 - x = 0. Jis tapo nepilnas . Kažkas panašaus jau buvo aptarta šiek tiek aukščiau. To šaknys bus skaičiai 0 ir 1.

Yra žinoma, kad tai yra tam tikra lygybės ax 2 + bx + c = o versija, kur a, b ir c yra tikrieji nežinomo x koeficientai, o kur a ≠ o, o b ir c bus nuliai - vienu metu arba atskirai. Pavyzdžiui, c = o, b ≠ o arba atvirkščiai. Beveik prisiminėme kvadratinės lygties apibrėžimą.

Antrojo laipsnio trinaris yra nulis. Jo pirmasis koeficientas a ≠ o, b ir c gali turėti bet kokias reikšmes. Tada kintamojo x reikšmė bus tada, kai pakeitimas pavers jį teisinga skaitine lygybe. Sutelkime dėmesį į realias šaknis, nors lygtys gali būti ir sprendiniai.Įprasta lygtį vadinti užbaigta, kurioje nė vienas iš koeficientų nėra lygus o, a ≠ o, b ≠ o, c ≠ o.
Išspręskime pavyzdį. 2x 2 -9x-5 = oi, mes randame
D = 81 + 40 = 121,
D yra teigiamas, o tai reiškia, kad yra šaknų, x 1 = (9+√121):4 = 5, o antrasis x 2 = (9-√121):4 = -o.5. Patikrinimas padės įsitikinti, ar jie teisingi.

Čia žingsnis po žingsnio sprendimas kvadratinė lygtis

Naudodami diskriminantą galite išspręsti bet kurią lygtį, kurios kairėje pusėje yra žinoma kvadratinis trinaris už ≠ o. Mūsų pavyzdyje. 2x 2 -9x-5 = 0 (ax 2 +in+s = o)

Panagrinėkime, kas yra nepilnos antrojo laipsnio lygtys

  1. ax 2 +in = o. Laisvasis narys, koeficientas c ties x 0, čia yra lygus nuliui, ≠ o.
    Kaip išspręsti nepilną tokio tipo kvadratinę lygtį? Išimkime x iš skliaustų. Prisiminkime, kai dviejų veiksnių sandauga lygi nuliui.
    x(ax+b) = o, tai gali būti, kai x = o arba kai ax+b = o.
    Išsprendę antrąjį, turime x = -в/а.
    Dėl to turime šaknis x 1 = 0, pagal skaičiavimus x 2 = -b/a.
  2. Dabar x koeficientas lygus o, o c nelygus (≠) o.
    x 2 +c = o. Perkelkime c į dešinę lygybės pusę, gausime x 2 = -с. Ši lygtis turi tik tikras šaknis, kai -c yra teigiamas skaičius (c ‹ o),
    Tada x 1 yra atitinkamai lygus √(-c), x 2 yra -√(-c). Priešingu atveju lygtis iš viso neturi šaknų.
  3. Paskutinis variantas: b = c = o, tai yra, ax 2 = o. Natūralu, kad tokia paprasta lygtis turi vieną šaknį, x = o.

Ypatingi atvejai

Pažiūrėjome, kaip išspręsti neišsamią kvadratinę lygtį, o dabar paimkime bet kokius tipus.

  • Visoje kvadratinėje lygtyje antrasis x koeficientas yra lyginis skaičius.
    Tegu k = o.5b. Turime diskriminanto ir šaknų skaičiavimo formules.
    D/4 = k 2 - ac, šaknys apskaičiuojamos kaip x 1,2 = (-k±√(D/4))/a D › o.
    x = -k/a, kai D = o.
    D ‹ o šaknų nėra.
  • Pateikiamos kvadratinės lygtys, kai x kvadrato koeficientas lygus 1, jos dažniausiai rašomos x 2 + рх + q = o. Jiems taikomos visos aukščiau pateiktos formulės, tačiau skaičiavimai yra šiek tiek paprastesni.
    Pavyzdys, x 2 -4x-9 = 0. Apskaičiuokite D: 2 2 +9, D = 13.
    x 1 = 2+√13, x 2 = 2-√13.
  • Be to, jį lengva pritaikyti duotiesiems.. Sakoma, kad lygties šaknų suma lygi -p, antrasis koeficientas su minusu (tai reiškia priešingą ženklą), o tų pačių šaknų sandauga bus būti lygus q, laisvajam nariui. Pažiūrėkite, kaip lengva būtų žodžiu nustatyti šios lygties šaknis. Neredukuotiems koeficientams (visiems nuliui nelygiems koeficientams) ši teorema taikytina taip: suma x 1 + x 2 lygi -b/a, sandauga x 1 · x 2 lygi c/a.

Laisvojo nario c ir pirmojo koeficiento a suma lygi koeficientui b. Šioje situacijoje lygtis turi bent vieną šaknį (lengva įrodyti), pirmoji būtinai lygi -1, o antroji -c/a, jei tokia yra. Galite patys patikrinti, kaip išspręsti nepilną kvadratinę lygtį. Lengva kaip pyragas. Koeficientai gali būti tam tikruose tarpusavio santykiuose

  • x 2 +x = o, 7x 2 -7 = o.
  • Visų koeficientų suma lygi o.
    Tokios lygties šaknys yra 1 ir c/a. Pavyzdys, 2x 2 -15x+13 = o.
    x 1 = 1, x 2 = 13/2.

Yra daugybė kitų būdų, kaip išspręsti įvairias antrojo laipsnio lygtis. Pavyzdžiui, čia yra metodas, kaip iš tam tikro daugianario išgauti visą kvadratą. Yra keletas grafinių metodų. Kai dažnai susiduriate su tokiais pavyzdžiais, išmoksite juos „spausti“ kaip sėklas, nes visi metodai ateina į galvą automatiškai.

Kvadratinė lygtis – lengva išspręsti! *Toliau – KU. Bičiuliai, atrodytų, kad matematikoje negali būti nieko paprasčiau nei išspręsti tokią lygtį. Tačiau kažkas man pasakė, kad daugelis žmonių turi problemų su juo. Nusprendžiau pažiūrėti, kiek parodymų pagal pareikalavimą „Yandex“ pateikia per mėnesį. Štai kas atsitiko, žiūrėk:


Ką tai reiškia? Tai reiškia, kad apie 70 000 žmonių per mėnesį ieško šios informacijos, ką su ja turi bendra ši vasara ir kas nutiks mokslo metai— prašymų bus dvigubai daugiau. Tai nenuostabu, nes šios informacijos ieško tie vaikinai ir merginos, kurie seniai baigė mokyklą ir ruošiasi vieningam valstybiniam egzaminui, o atmintį atgaivinti stengiasi ir moksleiviai.

Nepaisant to, kad yra daugybė svetainių, kuriose pasakojama, kaip išspręsti šią lygtį, aš nusprendžiau taip pat prisidėti ir paskelbti medžiagą. Pirma, noriu, kad lankytojai į mano svetainę ateitų pagal šį prašymą; antra, kituose straipsniuose, kai iškils tema “KU”, pateiksiu nuorodą į šį straipsnį; trečia, aš jums papasakosiu šiek tiek daugiau apie jo sprendimą, nei paprastai nurodoma kitose svetainėse. Pradėkime! Straipsnio turinys:

Kvadratinė lygtis yra tokios formos lygtis:

kur koeficientai a,bir c yra savavališki skaičiai, kurių a≠0.

Mokyklos kurse medžiaga pateikiama tokia forma - lygtys suskirstytos į tris klases:

1. Jie turi dvi šaknis.

2. *Turėti tik vieną šaknį.

3. Jie neturi šaknų. Čia ypač verta paminėti, kad jie neturi tikrų šaknų

Kaip apskaičiuojamos šaknys? Tiesiog!

Apskaičiuojame diskriminantą. Po šiuo „siaubingu“ žodžiu slypi labai paprasta formulė:

Šaknies formulės yra tokios:

*Šias formules reikia žinoti mintinai.

Galite iš karto užsirašyti ir išspręsti:

Pavyzdys:


1. Jei D > 0, tai lygtis turi dvi šaknis.

2. Jei D = 0, tai lygtis turi vieną šaknį.

3. Jei D< 0, то уравнение не имеет действительных корней.

Pažiūrėkime į lygtį:


Šiuo atžvilgiu, kai diskriminantas yra lygus nuliui, mokyklos kursas sako, kad gaunama viena šaknis, čia ji yra lygi devynioms. Viskas teisinga, taip yra, bet...

Ši mintis yra šiek tiek neteisinga. Tiesą sakant, yra dvi šaknys. Taip, taip, nenustebkite, gausite dvi lygias šaknis, o jei matematiškai tiksliai, tada atsakyme turėtų būti parašytos dvi šaknys:

x 1 = 3 x 2 = 3

Bet taip yra – mažas nukrypimas. Mokykloje gali užsirašyti ir pasakyti, kad yra viena šaknis.

Dabar kitas pavyzdys:


Kaip žinome, šaknis neigiamas skaičius nėra išgaunamas, todėl šiuo atveju sprendimo nėra.

Tai yra visas sprendimo procesas.

Kvadratinė funkcija.

Tai parodo, kaip sprendimas atrodo geometriškai. Tai nepaprastai svarbu suprasti (ateityje viename iš straipsnių išsamiai išanalizuosime kvadratinės nelygybės sprendimą).

Tai yra formos funkcija:

kur x ir y yra kintamieji

a, b, c – duoti skaičiai, kurių a ≠ 0

Grafikas yra parabolė:

Tai yra, paaiškėja, kad išsprendę kvadratinę lygtį, kai „y“ lygi nuliui, randame parabolės susikirtimo taškus su x ašimi. Šių taškų gali būti du (diskriminantas yra teigiamas), vienas (diskriminantas yra nulis) ir nė vienas (diskriminantas yra neigiamas). Išsami informacija apie kvadratinę funkciją Galite peržiūrėti Innos Feldman straipsnis.

Pažiūrėkime į pavyzdžius:

1 pavyzdys: išspręskite 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Atsakymas: x 1 = 8 x 2 = –12

*Galima buvo iš karto padalyti kairę ir dešinę lygties puses iš 2, tai yra supaprastinti. Skaičiavimai bus lengvesni.

2 pavyzdys: Nuspręskite x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 – 4ac = (–22) 2 –4, 1, 121 = 484–484 = 0

Mes nustatėme, kad x 1 = 11 ir x 2 = 11

Atsakyme leidžiama rašyti x = 11.

Atsakymas: x = 11

3 pavyzdys: Nuspręskite x 2 – 8x+72 = 0

a=1 b= –8 c=72

D = b 2 -4ac = (-8) 2 -4, 1, 72 = 64 - 288 = -224

Diskriminantas yra neigiamas, realiaisiais skaičiais sprendimo nėra.

Atsakymas: nėra sprendimo

Diskriminantas yra neigiamas. Yra sprendimas!

Čia kalbėsime apie lygties sprendimą tuo atveju, kai gaunamas neigiamas diskriminantas. Ar žinote ką nors apie kompleksinius skaičius? Čia nenagrinėsiu, kodėl ir kur jie atsirado ir koks jų specifinis vaidmuo ir būtinybė matematikoje; tai yra didelio atskiro straipsnio tema.

Kompleksinio skaičiaus samprata.

Šiek tiek teorijos.

Kompleksinis skaičius z yra formos skaičius

z = a + bi

kur a ir b yra realieji skaičiai, i yra vadinamasis įsivaizduojamas vienetas.

a+bi – tai VIENAS SKAIČIUS, o ne papildymas.

Įsivaizduojamas vienetas yra lygus minus vieneto šaknei:

Dabar apsvarstykite lygtį:


Gauname dvi konjuguotas šaknis.

Nebaigta kvadratinė lygtis.

Panagrinėkime specialius atvejus, kai koeficientas „b“ arba „c“ yra lygus nuliui (arba abu lygūs nuliui). Jas galima lengvai išspręsti be jokių diskriminacinių priemonių.

1 atvejis. Koeficientas b = 0.

Lygtis tampa tokia:

Transformuokime:

Pavyzdys:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

2 atvejis. Koeficientas c = 0.

Lygtis tampa tokia:

Transformuokime ir faktorizuokime:

* Produktas yra lygus nuliui, kai bent vienas iš veiksnių yra lygus nuliui.

Pavyzdys:

9x 2 –45x = 0 => 9x (x-5) =0 => x = 0 arba x-5 =0

x 1 = 0 x 2 = 5

3 atvejis. Koeficientai b = 0 ir c = 0.

Čia aišku, kad lygties sprendimas visada bus x = 0.

Naudingos koeficientų savybės ir modeliai.

Yra savybių, kurios leidžia išspręsti lygtis su dideliais koeficientais.

Ax 2 + bx+ c=0 galioja lygybė

a + b+ c = 0, Tai

- jei lygties koeficientams Ax 2 + bx+ c=0 galioja lygybė

a+ c =b, Tai

Šios savybės padeda išspręsti tam tikro tipo lygtį.

1 pavyzdys: 5001 x 2 –4995 x – 6=0

Šansų suma yra 5001+( 4995)+( 6) = 0, o tai reiškia

2 pavyzdys: 2501 x 2 +2507 x+6=0

Lygybė galioja a+ c =b, Reiškia

Koeficientų dėsningumai.

1. Jei lygtyje ax 2 + bx + c = 0 koeficientas "b" yra lygus (a 2 +1), o koeficientas "c" yra skaitine prasme lygus koeficientui "a", tai jo šaknys yra lygios

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Pavyzdys. Apsvarstykite lygtį 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Jei lygtyje ax 2 – bx + c = 0 koeficientas „b“ yra lygus (a 2 +1), o koeficientas „c“ skaitine prasme lygus koeficientui „a“, tai jo šaknys yra lygios.

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Pavyzdys. Apsvarstykite lygtį 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Jei lygtyje. ax 2 + bx – c = 0 koeficientas „b“ yra lygus (a 2 – 1), ir koeficientas „c“ yra skaitine prasme lygus koeficientui "a", tada jo šaknys lygios

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Pavyzdys. Apsvarstykite lygtį 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Jei lygtyje ax 2 – bx – c = 0 koeficientas „b“ yra lygus (a 2 – 1), o koeficientas c skaitine prasme lygus koeficientui „a“, tai jo šaknys yra lygios

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Pavyzdys. Apsvarstykite lygtį 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietos teorema.

Vietos teorema pavadinta garsaus prancūzų matematiko Francois Vieta vardu. Naudodamiesi Vietos teorema, galime išreikšti savavališko KU šaknų sumą ir sandaugą jo koeficientais.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Iš viso skaičius 14 duoda tik 5 ir 9. Tai šaknys. Turėdami tam tikrų įgūdžių, naudodami pateiktą teoremą, galite iškart žodžiu išspręsti daugybę kvadratinių lygčių.

Vietos teorema, be to. patogu tuo, kad išsprendus kvadratinę lygtį įprastu būdu(per diskriminantą) galima patikrinti susidariusias šaknis. Aš rekomenduoju tai daryti visada.

TRANSPORTAVIMO BŪDAS

Taikant šį metodą koeficientas „a“ dauginamas iš laisvojo termino, tarsi „įmetamas“ į jį, todėl jis vadinamas "perdavimo" metodas.Šis metodas naudojamas, kai lygties šaknis galima lengvai rasti naudojant Vietos teoremą ir, svarbiausia, kai diskriminantas yra tikslus kvadratas.

Jeigu A± b+c≠ 0, tada naudojama perdavimo technika, pavyzdžiui:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Naudojant Vietos teoremą (2) lygtyje, nesunku nustatyti, kad x 1 = 10 x 2 = 1

Gautas lygties šaknis reikia padalyti iš 2 (kadangi jos buvo „išmestos“ iš x 2), gauname

x 1 = 5 x 2 = 0,5.

Koks yra loginis pagrindas? Pažiūrėk, kas vyksta.

(1) ir (2) lygčių diskriminantai yra lygūs:

Jei pažvelgsite į lygčių šaknis, gausite tik skirtingus vardiklius, o rezultatas priklauso būtent nuo x 2 koeficiento:


Antrasis (modifikuotas) turi 2 kartus didesnes šaknis.

Todėl rezultatą padalijame iš 2.

*Jei persuksime tris, rezultatą padalinsime iš 3 ir pan.

Atsakymas: x 1 = 5 x 2 = 0,5

kv. ur-ie ir vieningas valstybinis egzaminas.

Trumpai papasakosiu apie jo svarbą – PRIVALAI MESTI greitai ir negalvodamas, reikia mintinai žinoti šaknų ir diskriminuojančių veiksnių formules. Daugelis problemų, įtrauktų į vieningo valstybinio egzamino užduotis, yra susijusios su kvadratinės lygties (įskaitant geometrines) sprendimu.

Į ką nors verta atkreipti dėmesį!

1. Lygties rašymo forma gali būti „numanoma“. Pavyzdžiui, galimas toks įrašas:

15+ 9x 2 - 45x = 0 arba 15x + 42 + 9x 2 - 45x = 0 arba 15 -5x + 10x 2 = 0.

Turite jį pateikti į standartinę formą (kad nesusipainiotumėte sprendžiant).

2. Atsiminkite, kad x yra nežinomas dydis ir jį galima žymėti bet kuria kita raide – t, q, p, h ir kt.

Kvadratinės lygtys. Diskriminuojantis. Sprendimas, pavyzdžiai.

Dėmesio!
Yra papildomų
Specialiajame 555 skyriuje nurodytos medžiagos.
Tiems, kurie labai „nelabai...“
Ir tiems, kurie „labai…“)

Kvadratinių lygčių tipai

Kas yra kvadratinė lygtis? Kaip tai atrodo? Per terminą kvadratinė lygtis raktinis žodis yra "kvadratas". Tai reiškia, kad lygtyje Būtinai turi būti x kvadratas. Be jo, lygtyje gali būti (arba negali būti!) tik X (iki pirmos laipsnio) ir tik skaičius (laisvas narys). Ir neturėtų būti X laipsnio, didesnio nei du.

Matematine prasme kvadratinė lygtis yra tokios formos lygtis:

Čia a, b ir c- kai kurie skaičiai. b ir c- Visiškai bet koks, bet A– nieko kito nei nulis. Pavyzdžiui:

Čia A =1; b = 3; c = -4

Čia A =2; b = -0,5; c = 2,2

Čia A =-3; b = 6; c = -18

Na, supranti...

Šiose kvadratinėse lygtyse kairėje yra pilna komplektacija nariai. X kvadratu su koeficientu A, x iki pirmojo laipsnio su koeficientu b Ir laisvas narys s.

Tokios kvadratinės lygtys vadinamos pilnas.

Ir jeigu b= 0, ką mes gauname? Mes turime X bus prarastas pirmajai galiai. Taip atsitinka padauginus iš nulio.) Pasirodo, pavyzdžiui:

5x 2 -25 = 0,

2x 2 -6x = 0,

-x 2 +4x=0

Ir taip toliau. Ir jei abu koeficientai b Ir c yra lygūs nuliui, tada dar paprasčiau:

2x2 =0,

-0,3x2 =0

Tokios lygtys, kuriose kažko trūksta, vadinamos nepilnos kvadratinės lygtys. Tai gana logiška.) Atkreipkite dėmesį, kad x kvadratas yra visose lygtyse.

Beje, kodėl A negali būti lygus nuliui? Ir jūs vietoj to pakeičiate A nulis.) Mūsų X kvadratas išnyks! Lygtis taps tiesinė. O sprendimas visai kitoks...

Tai visi pagrindiniai kvadratinių lygčių tipai. Pilnas ir neišsamus.

Kvadratinių lygčių sprendimas.

Pilnų kvadratinių lygčių sprendimas.

Kvadratines lygtis nesunku išspręsti. Pagal formules ir aiškias, paprastas taisykles. Pirmajame etape reikia duotą lygtį paversti standartine forma, t.y. į formą:

Jei lygtis jums jau pateikta šioje formoje, jums nereikia atlikti pirmojo etapo.) Svarbiausia yra teisingai nustatyti visus koeficientus, A, b Ir c.

Kvadratinės lygties šaknų radimo formulė atrodo taip:

Išraiška po šaknies ženklu vadinama diskriminuojantis. Bet daugiau apie jį žemiau. Kaip matote, norėdami rasti X, naudojame tik a, b ir c. Tie. koeficientai iš kvadratinės lygties. Tiesiog atsargiai pakeiskite vertybes a, b ir c Skaičiuojame pagal šią formulę. Pakeiskime su savo ženklais! Pavyzdžiui, lygtyje:

A =1; b = 3; c= -4. Čia mes tai užrašome:

Pavyzdys beveik išspręstas:

Tai yra atsakymas.

Viskas labai paprasta. Ir ką, jūs manote, kad neįmanoma suklysti? Na taip, kaip...

Dažniausios klaidos yra painiojimas su ženklų reikšmėmis a, b ir c. O tiksliau ne su jų ženklais (kur susipainioti?), o su pakeitimu neigiamos reikšmėsį šaknų skaičiavimo formulę. Čia padeda išsamus formulės įrašymas su konkrečiais skaičiais. Jei kyla problemų su skaičiavimais, padaryti, kad!

Tarkime, kad turime išspręsti šį pavyzdį:

Čia a = -6; b = -5; c = -1

Tarkime, žinote, kad pirmą kartą retai sulaukiate atsakymų.

Na, netingėk. Papildomai eilutei parašyti užtruks apie 30 sekundžių.Ir klaidų skaičius smarkiai sumažės. Taigi mes rašome išsamiai, su visais skliaustais ir ženklais:

Atrodo neįtikėtinai sunku taip kruopščiai parašyti. Bet taip tik atrodo. Pabandyk. Na, arba pasirinkti. Kas geriau, greitas ar teisingas? Be to, aš tave pradžiuginsiu. Po kurio laiko nebereikės visko taip kruopščiai surašyti. Tai išsispręs savaime. Ypač jei naudojate praktinius metodus, kurie aprašyti toliau. Šis blogas pavyzdys su daugybe minusų gali būti išspręstas lengvai ir be klaidų!

Tačiau dažnai kvadratinės lygtys atrodo šiek tiek kitaip. Pavyzdžiui, taip:

Ar atpažinote?) Taip! Tai nepilnos kvadratinės lygtys.

Nepilniųjų kvadratinių lygčių sprendimas.

Jas taip pat galima išspręsti naudojant bendrą formulę. Jums tereikia teisingai suprasti, kam jie čia prilygsta. a, b ir c.

Ar išsiaiškinote? Pirmame pavyzdyje a = 1; b = -4; A c? Jo visai nėra! Na taip, tai tiesa. Matematikoje tai reiškia c = 0 ! Tai viskas. Vietoj to formulėje pakeiskite nulį c, ir mums pasiseks. Tas pats su antruoju pavyzdžiu. Tik pas mus čia nėra nulio Su, A b !

Tačiau nepilnas kvadratines lygtis galima išspręsti daug paprasčiau. Be jokių formulių. Panagrinėkime pirmąją nepilną lygtį. Ką galite padaryti kairėje pusėje? Galite ištraukti X iš skliaustų! Išimkime.

Ir kas iš šito? Ir tai, kad sandauga lygi nuliui tada ir tik tada, kai kuris nors iš veiksnių yra lygus nuliui! Netikite manimi? Gerai, tada sugalvokite du ne nuo nulio skaičius, kuriuos padauginus bus gautas nulis!
Neveikia? Viskas...
Todėl drąsiai galime rašyti: x 1 = 0, x 2 = 4.

Visi. Tai bus mūsų lygties šaknys. Tinka abu. Pakeitus bet kurį iš jų į pradinę lygtį, gauname teisingą tapatybę 0 = 0. Kaip matote, sprendimas yra daug paprastesnis nei naudojant bendrą formulę. Beje, atkreipsiu dėmesį, kuris X bus pirmasis, o kuris antras – absoliučiai abejingas. Patogu rašyti eilės tvarka, x 1- kas mažesnis ir x 2- kas didesnis.

Antrąją lygtį taip pat galima išspręsti paprastai. Perkelkite 9 į dešinę pusę. Mes gauname:

Belieka išgauti šaknį iš 9, ir viskas. Tai paaiškės:

Taip pat dvi šaknys . x 1 = -3, x 2 = 3.

Taip išsprendžiamos visos nepilnos kvadratinės lygtys. Arba įdėdami X iš skliaustų arba tiesiog perkeldami skaičių į dešinę ir ištraukdami šaknį.
Labai sunku supainioti šiuos metodus. Vien dėl to, kad pirmu atveju teks ištraukti X šaknį, kuri kažkaip nesuprantama, o antruoju atveju nėra ką ištraukti iš skliaustų...

Diskriminuojantis. Diskriminacinė formulė.

Magiškas žodis diskriminuojantis ! Retas gimnazistas nėra girdėjęs šio žodžio! Frazė „sprendžiame per diskriminantą“ įkvepia pasitikėjimo ir užtikrintumo. Nes nereikia tikėtis gudrybių iš diskriminanto! Juo naudotis paprasta ir be rūpesčių.) Primenu jums labiausiai bendroji formulė už sprendimus bet koks kvadratinės lygtys:

Išraiška po šaknies ženklu vadinama diskriminantu. Paprastai diskriminantas žymimas raide D. Diskriminacinė formulė:

D = b 2 - 4ac

Ir kuo ši išraiška tokio nuostabaus? Kodėl jis nusipelnė ypatingo pavadinimo? Ką diskriminanto prasmė? Po visko -b, arba 2ašioje formulėje jie specialiai nieko nevadina... Raidės ir raidės.

Štai toks dalykas. Sprendžiant kvadratinę lygtį naudojant šią formulę, tai įmanoma tik trys atvejai.

1. Diskriminantas yra teigiamas. Tai reiškia, kad iš jo galima išgauti šaknį. Ar šaknis išgauta gerai, ar blogai – kitas klausimas. Svarbu tai, kas išgaunama iš esmės. Tada jūsų kvadratinė lygtis turi dvi šaknis. Du skirtingi sprendimai.

2. Diskriminantas lygus nuliui. Tada turėsite vieną sprendimą. Kadangi nulio pridėjimas ar atėmimas skaitiklyje nieko nekeičia. Griežtai kalbant, tai ne viena šaknis, o du vienodi. Tačiau supaprastintoje versijoje įprasta kalbėti apie vienas sprendimas.

3. Diskriminantas yra neigiamas. Negalima paimti neigiamo skaičiaus kvadratinės šaknies. Na, gerai. Tai reiškia, kad sprendimų nėra.

Atvirai kalbant, kada paprastas sprendimas kvadratines lygtis, diskriminanto sąvoka nėra ypač reikalinga. Mes pakeičiame koeficientų reikšmes į formulę ir suskaičiuojame. Ten viskas vyksta savaime, dvi šaknys, viena ir nė viena. Tačiau sprendžiant sudėtingesnes užduotis, be žinių diskriminanto reikšmė ir formulė nepakankamai. Ypač lygtyse su parametrais. Tokios lygtys yra akrobatinis skraidis valstybiniam egzaminui ir vieningam valstybiniam egzaminui!)

Taigi, kaip išspręsti kvadratines lygtis per diskriminantą, kurį prisiminėte. Arba išmokote, o tai irgi nėra blogai.) Mokate teisingai nustatyti a, b ir c. Ar žinai kaip? dėmesingai pakeiskite juos į šaknies formulę ir dėmesingai suskaičiuok rezultatą. Jūs suprantate, kad čia yra raktinis žodis dėmesingai?

Dabar atkreipkite dėmesį į praktinius metodus, kurie žymiai sumažina klaidų skaičių. Tie patys, kurie dėl neatidumo... Dėl ko vėliau tampa skaudu ir įžeidžiama...

Pirmas susitikimas . Nebūkite tingus prieš išspręsdami kvadratinę lygtį ir įveskite ją į standartinę formą. Ką tai reiškia?
Tarkime, kad po visų transformacijų gausite tokią lygtį:

Neskubėkite rašyti šaknies formulės! Beveik neabejotinai sumaišysite šansus a, b ir c. Teisingai sukonstruokite pavyzdį. Pirma, X kvadratas, tada be kvadrato, tada laisvas terminas. Kaip šitas:

Ir vėl, neskubėkite! Minusas prieš X kvadratą gali jus tikrai nuliūdinti. Lengva pamiršti... Atsikratykite minuso. Kaip? Taip, kaip mokyta ankstesnėje temoje! Turime padauginti visą lygtį iš -1. Mes gauname:

Bet dabar galite drąsiai užsirašyti šaknų formulę, apskaičiuoti diskriminantą ir baigti spręsti pavyzdį. Spręskite patys. Dabar turėtumėte turėti šaknis 2 ir -1.

Priėmimas antras. Patikrinkite šaknis! Pagal Vietos teoremą. Nebijok, aš viską paaiškinsiu! Tikrinama paskutinis dalykas lygtis. Tie. ta, kurią naudojome užrašydami šaknies formulę. Jei (kaip šiame pavyzdyje) koeficientas a = 1, patikrinti šaknis lengva. Užtenka juos padauginti. Rezultatas turėtų būti nemokamas narys, t.y. mūsų atveju -2. Atkreipkite dėmesį, ne 2, o -2! Laisvas narys su savo ženklu . Jei nepavyksta, vadinasi, jie jau kažkur susisuko. Ieškokite klaidos.

Jei tai veikia, turite pridėti šaknis. Paskutinis ir paskutinis patikrinimas. Koeficientas turėtų būti b Su priešingas pažįstamas. Mūsų atveju -1+2 = +1. Koeficientas b, kuris yra prieš X, yra lygus -1. Taigi, viskas teisinga!
Gaila, kad tai taip paprasta tik pavyzdžiams, kur x kvadratas yra grynas, su koeficientu a = 1. Bet bent jau patikrinkite tokias lygtis! Klaidų bus vis mažiau.

Trečias priėmimas . Jei jūsų lygtis turi trupmenų koeficientus, atsikratykite trupmenų! Padauginkite lygtį iš bendro vardiklio, kaip aprašyta pamokoje „Kaip išspręsti lygtis? Tapatybės transformacijos“. Dirbant su trupmenomis, klaidų kažkodėl vis atsiranda...

Beje, blogą pavyzdį pažadėjau supaprastinti su krūva minusų. Prašau! Štai jis.

Kad nesusipainiotume su minusais, lygtį padauginame iš -1. Mes gauname:

Tai viskas! Spręsti yra vienas malonumas!

Taigi, apibendrinkime temą.

Praktinis patarimas:

1. Prieš spręsdami kvadratinę lygtį įvedame į standartinę formą ir ją sudarome Teisingai.

2. Jei prieš X kvadratą yra neigiamas koeficientas, jį pašaliname visą lygtį padauginę iš -1.

3. Jeigu koeficientai trupmeniniai, tai trupmenas eliminuojame padauginę visą lygtį iš atitinkamo koeficiento.

4. Jei x kvadratas yra grynas, jo koeficientas lygus vienetui, sprendinį galima nesunkiai patikrinti naudojant Vietos teoremą. Daryk!

Dabar galime nuspręsti.)

Išspręskite lygtis:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1) (x+2)

Atsakymai (netvarkingai):

x 1 = 0
x 2 = 5

x 1,2 =2

x 1 = 2
x 2 = -0,5

x – bet koks skaičius

x 1 = -3
x 2 = 3

jokių sprendimų

x 1 = 0,25
x 2 = 0,5

Ar viskas tinka? Puiku! Kvadratinės lygtys nėra jūsų galvos skausmas. Pirmieji trys veikė, o likusieji ne? Tada problema yra ne su kvadratinėmis lygtimis. Problema yra identiškose lygčių transformacijose. Pažiūrėk nuorodą, tai naudinga.

Ne visai pavyksta? O gal visai nesiseka? Tada jums padės skyrius 555. Visi šie pavyzdžiai yra suskirstyti ten. Parodyta pagrindinis klaidos sprendime. Žinoma, kalbame ir apie identiškų transformacijų panaudojimą sprendžiant įvairias lygtis. Labai padeda!

Jei jums patinka ši svetainė...

Beje, turiu jums dar keletą įdomių svetainių.)

Galite praktikuotis spręsdami pavyzdžius ir sužinoti savo lygį. Testavimas su momentiniu patvirtinimu. Mokykimės – su susidomėjimu!)

Galite susipažinti su funkcijomis ir išvestinėmis.