Какой экологический фактор относится к абиотическим. Абиотические факторы наземной среды

Это прямо или косвенно действующие на организм факторы неживой природы - свет, температура, влажность, химический состав воздушной, водной и почвенной среды и др. (т. е. свойства среды, возникновение и воздействие которых прямо не зависит от деятельности живых организмов).

Свет

(cолнечная радиация) - экологический фактор, характеризующийся нитенсивностью и качеством лучистой энергии Солнца, которая используется фотосинтезирующими зелеными растениями для создания растительной биомассы. Солнечный свет, достигающий поверхности Земли, - основной источник энергии для поддержания теплового баланса планеты, водного обмена организмов, создания и превращения органического вещества автотрофным звеном биосферы, что в конечном итоге делает возможным формирование среды, способной удовлетворять жизненные потребности организмов.

Биологическое действие солнечного света обусловливается его спектральным составом [показать] ,

В спектральном составе солнечного света различают

  • инфракрасные лучи (длина волны более 0,75 мкм)
  • видимые лучи (0,40-0,75 мкм) и
  • ультрафиолетовые лучи (менее 0,40 мкм)

Разные участки солнечного спектра неравнозначны по биологическому действию.

Инфракрасные , или тепловые, лучи несут основное количество тепловой энергии. На их долю приходится около 49 % лучистой энергии, которая воспринимается живыми организмами. Тепловая радиация хорошо поглощается водой, количество которой в организмах довольно велико. Это приводит к нагреванию всего организма, что имеет особенное значение для холоднокровных животных (насекомых, рептилий и др.). У растений важнейшая функция инфракрасных лучей состоит в осуществлении транспирации, с помощью которой из листьев водяными парами отводится излишек тепла, а также в создании оптимальных условий для вхождения углекислого газа через устьица.

Видимый участок спектра составляют около 50 % лучистой энергии, поступающей на Землю. Данная энергия необходима растениям для фотосинтеза. Однако на это используется лишь 1 % ее, остальная же часть отражается или рассеивается в виде тепла. Этот участок спектра oбусловил появление у растительных и животных организмов многих важных приспособлений. У зеленых растений, кроме формирования светопоглотительного пигментного комплекса, с помощью которого осуществляется процесс фотосинтеза, возникла яркая окраска цветов, что способствует привлечению опылителей.

Для животных свет в основном играет информационную роль и участвует в регуляции многих физиолого-биохимческих процессов. Уже у простейших имеются светочувствительные органоиды (светочувствительный глазок у эвглены зеленой), а реакция на свет выражается в виде фототаксисов - перемещение в сторону наибольшей или наименьшей освещенности. Начиная с кишечнополостных, практически у всех животных развиваются различные по строению светочувствительные органы. Различают ночных и сумеречных животных (совы, летучие мыши и др.), а также животных, обитающих в постоянной темноте (медведка, аскарида, крот и др.).

Ультрафиолетовая часть характеризуется самой высокой энергией квантов и высокой фотохимической активностью. С помощью ультрафиолетовых лучей с длиной волны 0,29-0,40 мкм в организме животных осуществляется биосинтез витамина D, пигментов сетчатки глаза, кожи. Эти лучи лучше всего воспринимают органы зрения многих насекомых, у растений они оказывают формообразовательный эффект и способствуют синтезу некоторых биологически активных соединений (витаминов, пигментов). Лучи с длиной волны менее 0,29 мкм губительно действуют на живое.

Интенсивностью [показать] ,

У растений, жизнедеятельность которых всецело зависит от света, возникают различные морфоструктурные и функциональные адаптации к световому режиму местообитаний. По требовательности к условиям освещения растения распределены на следующие экологические группы:

  1. Светолюбивые (гелиофиты) растения открытых местообитаний, успешно произрастающие только в условиях полного солнечного освещения. Для них характерна высокая интенсивность фотосинтеза. Это ранневесенние растения степей и полупустынь (гусиный лук, тюльпаны), растения безлесных склонов (шалфей, мята, чабрец), хлебные злаки, подорожник, кувшинка, акация и др.
  2. Теневыносливые растения характеризуются широкой экологической амплитудой к световому фактору. Лучше всего растут в условиях высокой освещенности, однако способны адаптироваться к условиям разного уровня затенения. Это древесные (береза, дуб, сосна) и травянистые (земляника лесная, фиалка, зверобой и др.) растения.
  3. Тенелюбивые растения (сциофиты) не выносят сильного освещения, произрастают только в затененных местах (под пологом леса), а на открытых никогда не растут. На вырубках при сильном освещении у них происходит замедление роста, а иногда - гибель. К таким растениям относятся лесные травы - папоротники, мхи, кислица и др. Адаптация к затенению обычно сочетается с потребностью хорошего водоснабжения.

Суточной и сезонной периодичностью [показать] .

Суточная периодичность определяет процессы роста и развития растений и животных, которые зависят от длины светового дня.

Фактор, который регулирует и управляет ритмикой суточной жизнедеятельности организмов, называется фотопериодизмом. Он является важнейшим сигнальным фактором позволяющим растениям и животным "измерять время" - соотношение между продолжительностью периода освещенности и темноты в течение суток, определять количественые параметры освещенности. Иными словами, фотопериодизм - это реакция организмов на смену дня и ночи, которая проявляется в колебании интенсивности физиологических процессов - роста и развития. Именно продолжительность дня и ночи очень точно и закономерно изменяется в течение года независимо от случайных факторов, неизменно повторяясь из года в год, поэтому организмы в процессе эволюции согласовали все этапы своего развития с ритмом этих временных интервалов.

В умеренном поясе свойство фотопериодизма служит функциональным климатическим фактором, определяющим жизненный цикл большинства видов. У растений фотопериодический эффект проявляется в согласовании периода цветения и созревания плодов с периодом наиболее активного фотосинтеза, у животных - в совпадении времени размножения с периодом обилия пищи, у насекомых - в наступлении диапаузы и выходе из нее.

К биологическим явлениям, вызываемым фотопериодизмом, относятся также сезонные миграции (перелеты) птиц, проявление их гнездовых инстинктов и размножения, смена меховых покровов у млекопитающих и т. п.

По необходимой длительности светового периода растения разделяют на

  • длиннодневные, которым для нормального роста и развития необходимо больше 12 ч светового времени (лен, лук, морковь, овес, белена, дурман, молодило, картофель, белладонна и др.);
  • растения короткого дня - им нужно для зацветания не менее 12 ч беспрерывного темнового периода (георгины, капуста, хризантемы, амарант, табак, кукуруза, томаты и др.);
  • нейтральные растения, у которых развитие генеративных органов происходит как при длинном, так и при коротком дне (бархатцы, виноград, флоксы, сирень, гречиха, горох, спорыш и др.)

Растения длинного дня происходят преимущественно из северных широт, короткого - из южных. В тропическом поясе, где продолжительность дня и ночи мало изменяются на протяжении года, фотопериод не может служить ориентирующим фактором периодичности биологических процессов. Его заменяет чередование сухого и влажного сезонов. Длиннодневные виды успевают дать урожай даже в условиях короткого северного лета. Образование большой массы органических веществ происходит летом в течение довольно длинного светового дня, который на широте Москвы может достигать 17 ч, а на широте Архангельска - более 20 ч в сутки.

Продолжительность дня существенно сказывается и на поведении животных. С наступлением весенних дней, длительность которых прогрессивно увеличивается, у птиц появляются гнездовые инстинкты, они возвращаются из теплых краев (хотя температура воздуха еще может быть и неблагоприятной), приступают к кладке яиц; теплокровные животные линяют.

Сокращение длительности дня осенью вызывает противоположные сезонные явления: отлет птиц, некоторые животные впадают в спячку, у других отрастает плотный шерстный покров, образуются зимующие стадии у насекомых (несмотря на еще благоприятную температуру и обилие корма). В этом случае уменьшение длительности дня сигнализирует живым организмам о близком наступлении зимнего периода, и они могут заранее подготовиться к нему.

У животных, особенно у членистоногих, рост и развитие также зависят от длины светового дня. Например, капустная белянка, березовая пяденица нормально развиваются лишь при длинном световом дне, тогда как тутовый шелкопряд, различные виды саранчи, совок - при коротком. Фотопериодизм влияет и на время наступления и прекращения брачного периода у птиц, млекопитающих и других животных; на размножение, эмбриональное развитие земноводных, пресмыкающихся, птиц и млекопитающих;

Сезонные и суточные изменения освещенности являются самыми точными часами, ход которых четко закономерен и практически не изменился в течение последнего периода эволюции.

Благодаря этому появилась возможность искусственного регулирования развития животных и растений. Например, создание растениям в теплицах, оранжереях или парниках светового дня длительностью 12-15 ч позволяет даже зимой выращивать овощные культуры, декоративные растения, ускорять рост и развитие рассады. Наоборот, затенение растений летом ускоряет появление цветков или семян позднецветущих осенних растений.

Продолжением дня за счет искусственного освещения зимой можно увеличить период яйценосности кур, гусей, уток, регулировать размножение пушных зверей на зверофермах. Огромную роль играет световой фактор и в других жизненных процессах животных. Прежде всего он является необходимым условием видения, их зрительной ориентации в пространстве в результате восприятия органами зрения прямых, рассеянных или отраженных от окружающих предметов световых лучей. Велика информативность для большинства животных поляризованного света, способности различать цвета, ориентироваться по астрономическим источникам света в осенних и весенних миграциях птиц, в навигационных способностях других животных.

На основе фотопериодизма у растений и животных в процессе эволюции выработались специфические годичные циклы периодов роста, размножения, подготовки к зиме, которые получили название годичных или сезонных ритмов. Эти ритмы проявляются в изменении интенсивности характера биологических процессов и повторяются с годичной периодичностью. Совпадение периодов жизненного цикла с соответствующим временем года имеет огромное значение для существования вида. Сезонные ритмы обеспечивают растениям и животным наиболее благоприятные условия для роста и развития.

Более того, физиологические процессы растений и животных находятся в строгой зависимости от суточной ритмичности, что выражается определенными биологическими ритмами. Следовательно, биологические ритмы - это периодически повторяющиеся изменения интенсивности и характера биологических процессов и явлений. У растений биологические ритмы проявляются в суточном движении листьев, лепестков, изменении фотосинтеза, у животных - в колебании температуры, изменении секреции гормонов, скорости деления клеток и т. д. У человека также наблюдаются суточные колебания частоты дыхания, пульса, артериального давления, бодрствования и сна и др. Биологические ритмы являются наследственно закрепленными реакциями, поэтому познание их механизмов имеет важное значение при организации труда и отдыха человека.

Температура

Один из важнейших абиотических факторов, от которого в значительной степени зависит существование, развитие и распространение организмов на Земле [показать] .

Верхним температурным пределом жизни на Земле, вероятно, является 50-60°С. При таких температурах происходит потеря активности ферментов и свертывание белка. Однако общий температурный диапазон активной жизни на планете значительно шире и ограничивается следующими пределами (табл. 1)

Таблица 1. Температурный диапазон активной жизни на планете, °С

Среди организмов, способных существовать при очень высоких температурах, известны термофильные водоросли, которые могут жить в горячих источниках при 70-80°С. Успешно переносят очень высокие температуры (65-80°С) накипные лишайники, семена и вегетативные органы пустынных растений (саксаул, верблюжья колючка, тюльпаны), находящиеся в верхнем слое раскаленной почвы.

Существует немало видов животных и растений, выдерживающих большие значения минусовых температур. Деревья и кустарники в Якутии не вымерзают при минус 68°С. В Антарктиде при минус 70°С живут пингвины, а в Арктике - белые медведи, песцы, полярные совы. Полярные воды с температурой от 0 до -2°С населены разнообразными представителями растительного и животного мира - микроводорослями, беспозвоночными, рыбами, жизненный цикл которых постоянно происходит в таких температурных условиях.

Значение температуры состоит прежде всего в непосредственном ее влиянии на скорость и характер протекания реакций обмена веществ в организмах. Поскольку суточные и сезонные колебания температур возрастают по мере удаления от экватора, растения и животные, приспосабливаясь к ним, проявляют различную потребность в тепле.

Способы приспособления

  • Миграция - переселение в более благоприятные условия. Регулярно в течение года мигрируют киты, многие виды птиц, рыб, насекомых и других животных.
  • Оцепенение - состояние полной неподвижности, резкое снижение жизнедеятельности, прекращение питания. Наблюдается у насекомых, рыб, земноводных, млекопитающих при понижении температуры среды осенью, зимой (зимняя спячка) или при повышении ее летом в пустынях (летняя спячка).
  • Анабиоз - состояние резкого угнетения жизненных процессов, когда видимые проявления жизни временно прекращаются. Это явление обратимое. Отмечается у микробов, растений, низших животных. Семена некоторых растений в анабиозе могут находиться до 50 лет. Микробы в состоянии анабиоза образуют споры, простейшие - цисты.

Многие растения и животные при соответствующей подготовке успешно переносят в состоянии глубокого покоя или анабиоза предельно низкие температуры. В лабораторных экспериментах семена, пыльца, споры растений, нематоды, коловратки, цисты простейших и других организмов, сперматозоиды после обезвоживания или помещения в растворы специальных защитных веществ - криопротекторов - переносят температуры, близкие к абсолютному нулю.

В настоящее время достигнуты успехи по практическому использованию веществ с криопротекторными свойствами (глицерин, полиэтиленоксид, диметилсульфоксид, сахароза, маннит и др.) в биологии, сельском хозяйстве, медицине. В растворах криопротекторов осуществляется длительное хранение консервированной крови, спермы для искусственного осеменения сельскохозяйственных животных, некоторых органов и тканей для трансплантации; защита растений от зимних морозов, ранневесенних заморозков и т. п. Оказанные проблемы относятся к компетенции криобиологии и криомедицины и решаются многими научными учреждениями.

  • Терморегуляция. У растений и животных в процессе эволюции выработались различные механизмы терморегуляции:
  1. у растений
    • физиологический - накопление в клетках сахара, за счет которого повышается концентрация клеточного сока и снижается обводненность клеток, что способствует морозоустойчивости растений. Например, у карликовой березы, можжевельника верхние ветви при чрезмерно низкой температуре омертвевают, а стелющиеся перезимовывают под снегом и не погибают.
    • физический
      1. устьичная транспирация - отведения избытка тепла и предотвращение ожогов путем выведения воды (испарения) из тела растения
      2. морфологический - направленный на предотвращение перегрева: густая опушенность листьев для рассеивания солнечных лучей, глянцевитая поверхность для их отражения, уменьшение поглощающей лучи поверхности - свертывание листовой пластинки в трубочку (ковыль, овсяница), расположение листа ребром к солнечным лучам (эвкалипт), редуцирование листвы (саксаул, кактус); направленный на предотвращение замерзания: особые формы роста - карликовость, образование стелющихся форм (зимовка под снегом), темная окраска (помогает лучше поглощать тепловые лучи и нагреваться под снегом)
  2. у животных
    • холоднокровных (пойкилотермных, эктотермных) [беспозвоночные, рыбы, земноводные и пресмыкающиеся] - регуляция температуры тела осуществляется пассивно за счет усиления мышечной работы, особенностей структуры и цвета покровов, отыскивания мест, где возможно интенсивное поглощение солнечных лучей, и т.д., т.к. они не могут поддерживать температурный режим обменных процессов и их активность зависит главным образом, от тепла, поступающего извне, а температура тела - от значений температуры окружающей среды и энергетического баланса (соотношения поглощения и отдачи лучистой энергии).
    • теплокровных (гомойотермных, эндотермных) [птицы и млекопитающие] - способны поддерживать постоянную температуру тела независимо от температуры среды. Это свойство дает возмоность многим видами животных жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвины). В процессе эволюции у них выработались два механизма терморегуляции, с помощью которых они поддерживают постоянную температуру тела: химический и физический [показать] .
      • Химический механизм терморегуляции обеспечивается скоростью и интенсивностью окислительно-восстановительных реакций и контролируется рефлекторно центральной нервной системой. Важную роль в повышении эффективности химического механизма терморегуляции сыграли такие ароморфозы, как появление четырехкамерного сердца, совершенствование органов дыхания у птиц и млекопитающих.
      • Физический механизм терморегуляции обеспечивается появлением теплоизолирующих покровов (перья, мех, подкожно-жировая клетчатка), потовых желез, органов дыхания, а также развитием нервных механизмов регуляции кровообращения.

      Частным случаем гомойотермии является гетеротермия - разный уровень температуры тела в зависимости от функциональной активности организма. Гетеротермия свойственна животным, впадающим в неблагоприятный период года в спячку или временное оцепенение. При этом высокая температура их тела заметно снижается за счет замедленного обмена веществ (суслики, ежи, летучие мыши, птенцы стрижей и др.).

Пределы выносливости больших значений температурного фактора различны как у пойкилотермных, так и у гомойотермных организмов.

Эвритермные виды способны переносить колебания температуры в широких пределах.

Стенотермные организмы живут в условиях узких пределов температуры, подразделяясь на теплолюбивые стенотермные виды (орхидеи, чайный куст, кофе, кораллы, медузы и др.) и на холодолюбивые (кедровый стланик, предледниковая и тундровая растительность, рыбы полярных бассейнов, животные абиссали - области наибольших океанических глубин и т. п.).

Для каждого организма или группы особей существует, оптимальная зона температуры, в пределах которой деятельность выражена особенно хорошо. Выше этой зоны находится зона временного теплового оцепенения, еще выше - зона продолжительной бездеятельности или летней спячки, граничащая с зоной высокой летальной температуры. При понижении последней ниже оптимума находится зона холодового оцепенения, зимней спячки и летальной низкой температуры.

Распределение особей в популяции в зависимости от изменения температурного фактора по территории подчиняется в целом такой же закономерности. Зоне оптимальных температур соответствует наибольшая плотность популяции, а по обе стороны от нее наблюдается снижение плотности вплоть до границы ареала, где она наименьшая.

Температурный фактор на большой территории Земли подвержен резко выраженным суточным и сезонным колебаниям, что в свою очередь обусловливает соответствующий ритм биологических явлений в природе. В зависимости от обеспеченности тепловой энергией симметричных участков обоих полушарий земного шара, начиная от экватора, различают следующие климатические зоны:

  1. Тропическая зона . Минимальная среднегодовая температура превышает 16° C, в самые прохладные дни не опускается ниже 0° C. Колебания температуры во времени незначительны, амплитуда не превышает 5° C. Вегетация круглогодичная.
  2. Субтропическая зона . Средняя температура самого холодного месяца не ниже 4° C, а самого теплого - выше 20° C. Минусовые температуры редки. Устойчивый снежный покров зимой отсутствует. Вегетационный период продолжается 9-11 мес.
  3. Умеренная зона . Хорошо выражены летний вегетационный сезон и зимний период покоя растений. В основной части зоны устойчивый снежный покров. Весной и осенью типичны заморозки. Иногда эта зона подразделяется на две: умеренно теплую и умеренно холодную, для которых характерно четыре времени года.
  4. Холодная зона . Среднегодовая темлература ниже О° C, заморозки возможны даже в течение короткого (2-3 мес) вегетационного периода. Очень велико годовое колебание температуры.

Закономерность вертикального размещения растительности, почв, животного мира в горных районах обусловлена главным образом также температурным фактором. В горах Кавказа, Индии, Африки можно выделить четыре-пять растительных поясов, последовательность которых снизу вверх отвечает последовательности широтных зон от экватора к полюсу на одной и той же высоте.

Влажность

Экологический фактор, характеризующийся содержанием воды в воздухе, почве, живых организмах. В природе существует суточный ритм влажности: она повышается ночью и понижается днем. Вместе с температурой и светом влажность играет важную роль в регуляции активности живых организмов. Источником воды для растений и животных служат главным образом атмосферные осадки и подземные воды, а также роса и туман.

Влага - необходимое условие существования всех живых организмов на Земле. В водной среде зародилась жизнь. Обитатели суши и поныне зависимы от воды. Для многих видов животных и растений вода продолжает оставаться средой обитания. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, выступает важнейшим исходным, промежуточным и конечным продуктом биохимических превращений. Значимость воды определяется и ее количественным содержанием. Живые организмы состоят не менее чем на 3/4 из воды.

По отношению к воде высшие растения делятся на

  • гидрофиты - водные растения (кувшинка, стрелолист, ряска);
  • гигрофиты - обитатели избыточно увлажненных мест (аир, вахта);
  • мезофиты - растения нормальных условий влажности (ландыш, валериана, люпин);
  • ксерофиты - растения, живущие в условиях постоянного или сезонного дефицита влаги (саксаул, верблюжья колючка, эфедра) и их разновидности суккуленты (кактусы, молочаи).

Приспособления к обитанию в обезвоженной среде и среде с периодическим недостатком влаги

Важной особенностью основных климатических факторов (света, температуры, влажности) является их закономерная изменчивость в течение годичного цикла и даже суток, а также в зависимости от географической зональности. В связи с этим приспособления живых организмов также имеют закономерный и сезонный характер. Приспособление организмов к условиям среды может быть быстрым и обратимым или довольно медленным, что зависит от глубины воздействия фактора.

В результате жизнедеятельности организмы способны изменять абиотические условия жизни. Например, растения низшего яруса оказываются в условиях меньшей освещенности; процессы распада органических веществ, которые происходят в водоемах, часто вызывают дефицит кислорода для других организмов. За счет деятельности водных организмов изменяется температурный и водный режимы, количество кислорода, углекислого газа, рН среды, спектральный состав света и др.

Воздушная среда и ее газовый состав

Освоение воздушной среды организмами началось после выхода их на сушу. Жизнь в воздушной среде потребовала специфических приспособлений и высокого уровня организации растений и животных. Низкая плотность и оводненность, высокое содержание кислорода, легкость перемещения воздушных масс, резкие перепады температуры и т. п. заметно сказались на процессе дыхания, водообмене и передвижении живых существ.

Подавляющее большинство наземных животных в ходе эволюции приобрели способность к полету (75 % всех видов наземных животных). Для многих видов характерна ансмохория - расселение с помощью воздушных потоков (споры, семена, плоды, цисты простейших, насекомые, пауки и т. п.). Некоторые растения стали ветроопыляемыми.

Для успешного существования организмов важны не только физические, но и химические свойства воздуха, содержание в нем нужных для жизни газовых компонентов.

Кислород. Для абсолютного большинства живых организмов кислород жизненно необходим. В бескислородной среде могут развиваться только анаэробные бактерии. Кислород обеспечивает осуществление экзотермических реакций, в ходе которых освобождается необходимая для жизнедеятельности организмов энергия. Он является конечным акцептором электрона, который отщепляется от атома водорода в процессе энергетического обмена.

В химически связанном состоянии кислород входит в состав многих очень важных органических и минеральных соединений живых организмов. Огромна его роль как окислителя в круговороте отдельных элементов биосферы.

Единственными продуцентами свободного кислорода на Земле являются зеленые растения, которые образуют его в процессе фотосинтеза. Определенное количество кислорода образуется в результате фотолиза паров воды ультрафиолетовыми лучами за пределами озонового слоя. Поглощение организмами кислорода из внешней среды происходит всей поверхностью тела (простейшие, черви) или специальными органами дыхания: трахеями (насекомые), жабрами (рыбы), легкими (позвоночные).

Кислород химически связывается и переносится по всему организму специальными пигментами крови: гемоглобином (позвоночные), гемоциапином (моллюски, ракообразные). У организмов, пребывающих в условиях постоянного недостатка кислорода, выработались соответствующие приспособления: повышенная кислородная емкость крови, более частые и глубокие дыхательные движения, большой объем легких (у жителей высокогорья, птиц) или уменьшение использования кислорода тканями благодаря повышению количества миоглобина - аккумулятора кислорода в тканях (у обитателей водной среды).

Вследствие высокой растворимости СО 2 и О 2 в воде относительное их содержание здесь выше (в 2-3 раза), чем в воздушной среде (рис. 1). Это обстоятельство очень важно для гидробионюв, использующих либо растворенный кислород для дыхания, либо СО 2 для фотосинтеза (водные фототрофы).

Углекислый газ. Нормальное количество этого газа в воздухе невелико - 0,03 % (по объему) или 0,57 мг/л. Вследствие этого даже небольшие колебания в содержании СО 2 существенно отражаются па непосредственно зависящем от него процессе фотосинтеза. Главные источники поступления СО 2 в атмосферу - дыхание животных и растений, процессы горения, извержения вулканов, деятельность почвенных микроорганизмов и грибов, промышленные предприятия и транспорт.

Обладая свойством поглощения в инфракрасной области спектра, углекислый газ влияет на оптические параметры и температурный режим атмосферы, обусловливая известный "парниковый эффект".

Важным экологическим аспектом является повышение растворимости кислорода и углекислого газа в воде по мере уменьшения ее температуры. Именно поэтому фауна водных бассейнов полярных и приполярных широт очень обильна и разнообразна, главным образом за счет повышенной концентрации в холодной воде кислорода. Растворение кислорода в воде, как и любого другого газа, подчиняется закону Генри: оно обратно пропорционально температуре и прекращается при достижении точки кипения. В теплых водах тропических бассейнов пониженная концентрация растворенного кислорода ограничивает дыхание, а следовательно, и жизнедеятельность и численность водных животных.

В последнее время наблюдается заметное ухудшение кислородного режима многих водоемов, вызванное увеличением количества органических загрязнителей, деструкция которых требует большого количества кислорода.

Зональность распространения живых организмов

Географическая (широтная) зональность

В широтном направлении с севера на юг на территории РФ последовательно располагаются такие природные зоны: тундра, тайга, лиственный лес, степь, пустыня. Среди элементов климата, которые определяют зональность размещения и распространения организмов, ведущую роль играют абиотические факторы - температура, влажность, световой режим.

Наиболее заметно зональные изменения проявляются в характере растительности - ведущем компоненте биоценоза. Это в свою очередь сопровождается изменениями состава животных - потребителей и деструкторов органических остатков звеньев цепей питания.

Тундра - холодная, безлесная равнина северного полушария. Климатические условия ее мало пригодны для вегетации растений и разложения органических остатков (вечная мерзлота, относительно низкая температура даже летом, короткий период плюсовых температур). Тут сформировались своеобразные малочисленные по видовому составу (мхи, лишайники) биоценозы. Продуктивность биоценоза тундры в связи с этим малая: 5-15 ц/га органического вещества в год.

Зона тайги характеризуется относительно благоприятными почвенно-климатическими условиями, особенно для хвойных пород. Тут сформировались богатые и высокопродуктивные биоценозы. Ежегодное образование органического вещества составляет 15-50 ц/га.

Условия умеренной зоны привели к формированию сложных биоценозов лиственных лесов с самой высокой на территории РФ их биологической продуктивностью (до 60 ц/га в год). Разновидностями лиственных лесов являются дубравы, буково-кленовые, смешанные леса и др. Такие леса характеризуются хорошо развитым кустарниковым и травянистым подлесками, что способствует размещению разнообразной по видам и количеству фауны.

Степи - природная зона умеренного пояса полушарий Земли, которая характеризуется недостаточным водообеспечением, поэтому тут преобладает травянистая, преимущественно злаковая растительность (ковыль, типчак и др.). Животный мир разнообразен и богат (лисица, заяц, хомяк, мыши, много птиц, особенно перелетных). В степной зоне размещены важнейшие районы производства зерна, технических, овощных культур и животноводства. Биологическая продуктивность этой природной зоны относительно велика (до 50 ц/га в год).

Пустыни преобладают в Средней Азии. Вследствие незначительного количества осадков и высокой температуры летом растительность занимает менее половины территории этой зоны и имеет специфические приспособления к засушливым условиям. Животный мир разнообразен, его биологические особенности рассматривались раньше. Ежегодное образование органической массы в зоне пустынь не превышает 5 ц/га (рис. 107).

Соленость среды

Соленость водной среды характеризуется содержанием в ней растворимых солей. В пресной воде содержится 0,5-1,0 г/л, а в морской - 10-50 г/л солей.

Соленость водной среды имеет важное значение для ее обитателей. Существуют животные, приспособленные к обитанию только в пресной воде (карпообразные) или только в морской (сельдеобразные). У некоторых же рыб отдельные стадии индивидуального развития проходят при различной солености воды, например угорь обыкновенный обитает в пресных водоемах, а на нерест мигрирует в Саргассово море. Таким водным обитателям необходима соответствующая регуляция солевого баланса в организме.

Механизмы регуляции ионного состава организмов .

Сухопутные животные вынуждены регулировать солевой состав своих жидких тканей для поддержания внутренней среды в постоянном или почти постоянном химически неизмененном ионном состоянии. Основной способ поддерживать солевой баланс у гидробионтов и сухопутных растений - избегать местообитаний с неподходящей соленостью.

Особенно напряженно и безошибочно должны работать такие механизмы у мигрирующих рыб (лосося, кеты, горбуши, угря, осетра), которые периодически переходят из морской воды в пресную или наоборот.

Проще всего происходит осмотическая регуляция в пресной воде. Известно, что в последней концентрация ионов значительно меньше, чем в жидких тканях. Согласно законам осмоса внешняя среда по концентрационному градиенту через полупроницаемые мембраны поступает внутрь клеток, происходит как бы "разведение" внутреннего содержимого. Если бы такой процесс не контролировался, организм мог бы разбухнуть и погибнуть. Однако пресноводные организмы имеют органы, которые выводят наружу лишнюю воду. Сохранению необходимых для жизнедеятельности ионов способствует то, что моча у таких организмов довольно разбавленная (рис. 2, а). Отделение такого разведенного раствора от внутренних жидкостей, вероятно, требует активной химической работы специализированных клеток или органов (почек) и потребления ими значительной доли общей энергии основного обмена.

Наоборот, морские животные и рыбы пьют и усваивают только морскую воду, пополняя тем самым постоянный выход ее из организма во внешнюю среду, которая характеризуется высоким осмотическим потенциалом. При этом одновалентные ионы соленой воды активно выводятся наружу жабрами, а двухвалентные - почками (рис. 2, б). На откачку избыточной воды клетки затрачивают довольно много энергии, поэтому при возрастании солености и уменьшении воды в теле организмы обычно переходят к неактивному состоянию - солевому анабиозу. Это свойственно видам, обитающим в периодически пересыхающих лужах морской воды, лиманах, на литорали (коловратки, бо-коплавы, жгутиковые и др.)

Соленость верхнего слоя земной коры определяется содержанием в ней ионов калия и натрия, и также, как и соленость водной среды, имеет важное значение для ее обитателей и, в первую очередь, растений, которые имеют к ней соответствующую приспособленность. Этот фактор для растений не случаен, он сопровождает их в течение эволюционного процесса. К почвам с высоким содержанием калия и натрия приурочена так называемая солончаковая растительность (солянка, солодка и др.).

Верхний слой земной коры - это почва. Кроме солености почвы различают другие ее показатели: кислотность, гидротермический режим, аэрация почвы и т.п. В совокупности с рельефом эти свойства земной поверхности, получившие название эдафические факторы среды, оказывают экологическое воздействие на ее обитателей.

Эдафические факторы среды

Свойства земной поверхности, оказывающие экологическое воздействие на ее обитателей.


заимствовано

Почвенный профиль

Тип почвы определяется ее составом и цветом.

A - Тундровая почва имеет темную торфянистую поверхность.

B - Пустынная почва светлая, крупнозерниста и бедна органическим веществом

Каштановая почва (С) и чернозем (D) - богатые перегноем луговые почвы, типичные для степей Евразии и прерий Северной Америки.

Красноватый выщелоченный латосол (Е)тропической саванны имеет очень тонкий, но богатый перегноем слой.

Подзолистые почвы типичны для северных широт, где выпадает большое количество осад ков, а испарение очень мало. Они включают богатый органическими веществами коричневый лесной подзол (F), серо-коричневый подзол (Н) и серо-каменистый подзол (I), на котором произрастают как хвойные, так и лиственные деревья. Все они относительно кислые, и в отличие от них красно-желтый подзол (G) сосновых лесов достаточно сильно выщелочен.

В зависимости от эдафических факторов можно выделить ряд экологических групп растений.

По реакции на кислотность почвенного раствора различают:

  • ацидофильные виды, растущие при рН ниже 6,5 (растения торфяных болот, хвощ, сосна, пихта, папоротник);
  • нейтрофильные, предпочитающие почву с нейтральной реакцией (рН 7) (большинство культурных растений);
  • базифильные - растения, которые лучше всего растут на субстрате, имеющем щелочную реакцию (рН более 7) (ель, граб, туя)
  • и индифферентные - могут произрастать на почвах с разным значением рН.

По отношению к химическому составу почвы растения делятся на

  • олиготрофные, малотребовательные к количеству питательных веществ;
  • мезотрофные, требующие умеренного количества минеральных веществ в почве (травянистые многолетники, ель),
  • мезотрофные, нуждающиеся в большом количестве доступных зольных элементов (дуб, плодовые).

По отношению к отдельным элементам питания

  • виды, особенно требовательные к высокому содержанию азота в почве, называются - нитрофилами (крапива, растения скотных дворов);
  • требующие много кальция - кальцефилами (бук, лиственница, порезник, хлопчатник, маслина);
  • растения засоленных почв называются галофитами (солянка, сарсазан), излишек солей некоторые из галофитов способны выделять наружу, где эти соли после высыхания образуют твердые пленки или кристаллические скопления

По отношению к механическому составу

  • растений сыпучих песков - псаммофиты (саксаул, акация песчаная)
  • растений каменистых осыпей, трещин и углублений скал и других подобных местообитаний - литофиты [петрофиты] (можжевельник, дуб скальный)

Рельеф местности и характер грунта существенно влияют на специфику передвижения животных, на распределение видов, жизнедеятельность которых временно или постоянно связана с почвой. От гидротермического режима почв, их аэрации, механического и химического составов зависят характер корневой системы (глубинная, поверхностная), образ жизни почвенной фауны. Химический состав почвы и разнообразие обитателей влияют на ее плодородие. Наиболее плодородными являются черноземные почвы, богатые перегноем.

Как абиотический фактор рельеф оказывает влияние на распределение климатических факторов и, таким образом, на формирование соответствующих флоры и фауны. Например, на южных склонах холмов или гор всегда более высокая температура, лучшая освещенность и соответственно меньшая влажность.

Свет относится к основным факторам внешней среды. Без света невозможна фотосинтетическая деятельность растений, а без последней немыслима жизнь вообще, поскольку зеленые растения обладают способностью продуцировать необходимый для всех живых существ кислород. Кроме того, свет является единственным источником тепла на планете Земля. Он оказывает непосредственное воздействие на химические и физические процессы, происходящие в организмах, влияет на обмен веществ.

Многие морфологические и поведенческие характеристики различных организмов связаны с воздействием на них света. Деятельность некоторых внутренних органов животных также тесно связана с освещением. Поведение животных, например сезонные перелеты, кладка яиц, ухаживание за самками, весенний гон, связано с продолжительностью светового дня.

В экологии под термином «свет» подразумевается весь диапазон солнечного излучения, достигающего земной поверхности. Спектр распределения энергии излучения Солнца за пределами земной атмосферы показывает, что около половины солнечной энергии излучается в инфракрасной области, 40 % — в видимой и 10 % — в ультрафиолетовой и рентгеновской областях.

Для живого вещества важны качественные признаки света — длина волны, интенсивность и продолжительность воздействия. Различают ближнее ультрафиолетовое излучение (400-200 нм) и дальнее, или вакуумное (200-10 нм). Источники ультрафиолетового излучения — высокотемпературная плазма, ускоренные электроны, некоторые лазеры, Солнце, звезды и др. Биологическое действие ультрафиолетового излучения обусловлено химическими изменениями поглощающих их молекул живых клеток, главным образом молекул нуклеиновых кислот (ДНК и РНК) и белков, и выражается в нарушениях деления, возникновении мутаций и гибели клеток.

Часть солнечных лучей, преодолев огромное расстояние, достигает поверхности Земли, освещает и обогревает ее. Подсчитано, что на нашу планету поступает около одной двухмиллиардной части солнечной энергии, а из этого количества лишь 0,1-0,2 % используется зелеными растениями для создания органического вещества. Каждому квадратному метру планеты достается в среднем по 1,3 кВт энергии Солнца. Ее хватило бы для работы электрического чайника или утюга.

Условия освещения играют исключительную роль в жизни растений: от интенсивности солнечного освещения зависит их продуктивность, производительность. Однако световой режим на Земле довольно разнообразный. В лесу он иной, нежели на лугу. Освещение в лиственном и темнохвойном еловом лесу заметно различается.

Свет управляет ростом растений: они растут в направлении большей освещенности. Их чувствительность к свету столь велика, что побеги некоторых растений, в течение дня содержащиеся в темноте, реагируют на вспышку света, длящуюся всего две тысячные доли секунды.

Все растения по отношению к свету можно разделить на три группы: гелиофиты, сциофиты, факультативные гелиофиты.

Гелиофиты (от греч. helios — солнце и phyton — растение), или светолюбивые растения, либо совсем не переносят, либо плохо переносят даже незначительное затенение. К данной группе относятся степные и луговые злаки, растения тундр, ранневесенние растения, большинство культурных растений открытого грунта, многие сорняки. Из видов этой группы можно отмстить подорожник обыкновенный, иван-чай, вейник тростниковидный и др.

Сциофиты (от греч. scia — тень), или теневые растения, не выносят сильного освещения и живут в постоянной тени под пологом леса. Это главным образом лесные травы. При резком осветлении лесного полога они приходят в угнетенное состояние и нередко погибают, но многие перестраивают фотосинтетический аппарат и приспосабливаются к жизни в новых условиях.

Факультативные гелиофиты , или теневыносливые растения, способны развиваться как при очень большом, так и при малом количестве света. В качестве примера можно назвать некоторые деревья — ель обыкновенную, клен остролистный, граб обыкновенный; кустарники — лешину, боярышник; травы — землянику, герань полевую; многие комнатные растения.

Важным абиотическим фактором является температура. Любой организм способен жить в пределах определенного диапазона температур. Область распространения живого в основном ограничена областью от чуть ниже 0 °С до 50 °С.

Основным источником тепла, как и света, является солнечное излучение. Организм может выживать только в условиях, к которым приспособлен его метаболизм (обмен веществ). Если температура живой клетки падает ниже точки замерзания, клетка обычно физически повреждается и гибнет в результате образования кристаллов льда. Если же температура слишком высокая, происходит денатурация белков. Именно это имеет место при варке куриного яйца.

Большинство организмов способно в той или иной степени контролировать температуру своего тела с помощью различных ответных реакций. У подавляющего числа живых существ температура тела может изменяться в зависимости от температуры окружающей среды. Такие организмы не способны регулировать свою температуру и называются холоднокровными (пойкилотермными). Их активность в основном зависит от тепла, поступающего извне. Температура тела пойкилотермных организмов связана со значениями температуры окружающей среды. Холоднокровность свойственна таким группам организмов, как растения, микроорганизмы, беспозвоночные, рыбы, рептилии и др.

Значительно меньшее количество живых существ способно к активному регулированию температуры тела. Это представители двух высших классов позвоночных — птицы и млекопитающие. Вырабатываемое ими тепло является продуктом биохимических реакций и служит существенным источником повышения температуры тела. Такая температура поддерживается на постоянном уровне независимо от температуры окружающей среды. Организмы, способные поддерживать постоянную оптимальную температуру тела независимо от температуры среды, называются теплокровными (гомойотермными). За счет этого свойства многие виды животных могут жить и размножаться при температуре ниже нуля (северный олень, белый медведь, ластоногие, пингвин). Поддержание постоянной температуры тела обеспечивается хорошей тепловой изоляцией, создаваемой меховым покровом, плотным оперением, подкожными воздушными полостями, толстым слоем жировой ткани и т.д.

Частный случай гомойотермии — гетеротермия (от греч. heteros — разный). Разный уровень температуры тела у гетеротермных организмов зависит от их функциональной активности. В период активности они обладают постоянной температурой тела, а в период отдыха или зимней спячки температура значительно понижается. Гетеротермность характерна для сусликов, сурков, барсуков, летучих мышей, ежей, медведей, колибри и др.

Особую роль в жизнедеятельности живых организмов играют условия увлажнения.

Вода — основа живой материи. Для большинства живых организмов вода является одним из главных экологических факторов. Это важнейшее условие существования всего живого на Земле. Все жизненные процессы в клетках живых организмов протекают в водной среде.

Вода химически не изменяется под действием большинства технических соединений, которые она растворяет. Это очень важно для живых организмов, поскольку необходимые их тканям питательные вещества поступают в водных растворах в сравнительно малоизмененном виде. В природных условиях вода всегда содержит то или иное количество примесей, не только взаимодействуя с твердыми и жидкими веществами, но и растворяя газы.

Уникальные свойства воды предопределяют ее особую роль в формировании физической и химической среды нашей планеты, а также в возникновении и поддержании удивительного явления — жизни.

Эмбрион человека на 97 % состоит из воды, а у новорожденных ее количество составляет 77 % массы тела. К 50 годам количество воды в теле человека уменьшается и составляет уже 60 % его массы. Основная часть воды (70 %) сосредоточена внутри клеток, а 30 % — это межклеточная вода. Мышцы человека состоят на 75 % из воды, печень — на 70, мозг — на 79, почки — на 83 %.

Тело животного содержит, как правило, не менее 50 % воды (например, слона — 70 %, гусеницы, поедающей листья растений, — 85-90 %, медузы — более 98 %).

Больше всего воды (из расчета суточной потребности) из наземных животных нужно слону — около 90 л. Слоны — одни из лучших «гидрогеологов» среди зверей и птиц: водоемы они чувствуют на расстоянии до 5 км! Только бизоны еше дальше — на 7-8 км. В засушливое время слоны роют бивнями в руслах пересохших рек ямы, куда собирается вода. Буйволы, носороги и другие африканские животные охотно пользуются слоновьими колодцами.

Распространение жизни на Земле напрямую связано с осадками. Влажность в разных точках земного шара неодинаковая. Больше всего осадков выпадает в экваториальной зоне, особенно в верхнем течении реки Амазонки и на островах Малайского архипелага. Количество их в отдельных районах достигает 12 000 мм в год. Так, на одном из Гавайских островов от 335 до 350 дней в году идут дожди. Это самое влажное место на Земле. Среднегодовое количество осадков достигает здесь 11 455 мм. Для сравнения: в тундре и пустынях выпадает менее 250 мм осадков в год.

Животные по-разному относятся к влаге. Вода как физико-химическое тело оказывает непрерывное воздействие на жизнь гидробионтов (водных организмов). Она не только удовлетворяет физиологические потребности организмов, но и доставляет кислород и пищу, уносит метаболиты, переносит половые продукты и самих гидробионтов. Благодаря подвижности воды в гидросфере возможно существование прикрепленных животных, которых, как известно, нет на суше.

Эдафические факторы

Вся совокупность физических и химических свойств почвы, оказывающих экологическое воздействие на живые организмы, относится к эдафическим факторам (от греч. edaphos — основание, земля, почва). Основные эдафические факторы — механический состав почвы (размер ее частиц), относительная рыхлость, структура, водопроницаемость, аэрируемость, химический состав почвы и циркулирующих в ней веществ (газов, воды).

Характер гранулометрического состава почвы может иметь экологическое значение для животных, которые в определенный период жизни обитают в почве или ведут роющий образ жизни. Личинки насекомых, как правило, не могут жить в слишком каменистой почве; роющие перепончатокрылые, откладывающие яйца в подземных ходах, многие саранчовые, зарывающие яйцевые коконы в землю, нуждаются в том, чтобы она была достаточно рыхлой.

Важной характеристикой почвы является ее кислотность. Известно, что кислотность среды (рН) характеризует концентрацию ионов водорода в растворе и численно равна отрицательному десятичному логарифму этой концентрации: рН = -lg. Водные растворы могут иметь рН от 0 до 14. Нейтральные растворы имеют рН 7, кислая среда характеризуется значениями рН меньше 7, а щелочная — больше 7. Кислотность может служить индикатором скорости общего метаболизма сообщества. Если показатель рН почвенного раствора низкий, это означает, что в почве содержится мало биогенных элементов, поэтому ее продуктивность крайне мала.

По отношению к плодородию почвы различают следующие экологические группы растений:

  • олиготрофы (от греч. olygos — небольшой, незначительный и trophe — питание) — растения бедных, малоплодородных почв (сосна обыкновенная);
  • мезотрофы (от греч. mesos — средний) — растения с умеренной потребностью в питательных веществах (большинство лесных растений умеренных широт);
  • эвтрофы (от греч. ей — хорошо) — растения, требующие большого количества питательных веществ в почве (дуб, лещина, сныть).

Орографические факторы

На распространение организмов по земной поверхности определенное влияние оказывают такие факторы, как особенности элементов рельефа, высота над уровнем моря, экспозиция и крутизна склонов. Они объединяются в группу орографических факторов (от греч. орос — гора). Их воздействие может сильно сказываться на местном климате и развитии почвы.

Одним из главных орографических факторов является высота над уровнем моря. С высотой снижаются средние температуры, усиливается суточный перепад температур, увеличиваются количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы оказывают воздействие на растения и животных, обусловливая вертикальную зональность.

Характерный пример — вертикальная зональность в горах. Здесь с подъемом на каждые 100 м температура воздуха понижается в среднем на 0,55 °С. Одновременно изменяется влажность, сокращается длительность вегетационного периода. С увеличением высоты местообитания существенно меняется развитие растений и животных. У подножия гор могут находиться тропические моря, а на вершине дуют арктические ветры. С одной стороны гор может быть солнечно и тепло, с другой — влажно и холодно.

Еще один орографический фактор — экспозиция склона. На северных склонах растения образуют теневые формы, на южных — световые. Растительность представлена здесь главным образом засухоустойчивыми кустарниками. Склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. С этим связаны существенные различия в прогревании воздуха и почвы, скорости таяния снега, иссушения почвы.

Важным фактором является крутизна склона. Влияние этого показателя на условия жизни организмов сказывается главным образом через особенности почвенной среды, водного и температурного режимов. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому почвы здесь маломощные и более сухие. Если уклон превышает 35°, обычно создаются осыпи из рыхлого материала.

Гидрографические факторы

Гидрографические факторы включают такие характеристики водной среды, как плотность воды, скорость горизонтальных перемещений (течение), количество растворенного в воде кислорода, содержание взвешенных частиц, проточность, температурный и световой режимы водоемов и т.п.

Организмы, обитающие в водной среде, называются гидробионтами.

Разные организмы по-своему приспособились к плотности воды и определенным глубинам. Некоторые виды могут переносить давление от нескольких до сотен атмосфер. Многие рыбы, головоногие моллюски, ракообразные, морские звезды живут на больших глубинах при давлении около 400-500 атм.

Высокая плотность воды обеспечивает существование в водной среде многих бесскелетных форм. Это мелкие ракообразные, медузы, одноклеточные водоросли, киленогие и крылоногие моллюски и др.

Высокая удельная теплоемкость и высокая теплопроводность воды определяют более устойчивый по сравнению с сушей температурный режим водоемов. Амплитуда годовых колебаний температуры не превышает 10-15 °С. В континентальных водоемах она составляет 30-35 °С. В самих же водоемах температурные условия между верхними и нижними слоями воды значительно различаются. В глубоких слоях водной толщи (в морях и океанах) температурный режим отличается устойчивостью и постоянством (3-4 °С).

Важным гидрографическим фактором является световой режим водоемов. С глубиной количество света быстро убывает, поэтому в Мировом океане водоросли обитают только в освещенной зоне (чаще всего на глубинах от 20 до 40 м). Плотность морских организмов (их количество на единицу площади или объема) закономерно уменьшается с глубиной.

Химические факторы

Действие химических факторов проявляется в виде проникновения в окружающую среду химических веществ, отсутствовавших в ней раньше, что в значительной степени связано с современным антропогенным влиянием.

Такой химический фактор, как газовый состав, чрезвычайно важен для организмов, обитающих в водной среде. Например, в водах Черного моря очень много сероводорода, что делает этот бассейн не совсем благоприятным для жизни в нем некоторых животных. Впадающие в него реки несут с собой не только пестициды или тяжелые металлы, смывающиеся с полей, но также азот и фосфор. А это не только сельскохозяйственные удобрения, но и пища для морских микроорганизмов и водорослей, которые из-за переизбытка питательных веществ начинают бурно развиваться (цветение воды). Умирая, они опускаются на дно и в процессе гниения потребляют значительное количество кислорода. За последние 30-40 лет цветение Черного моря значительно усилилось. В нижнем слое воды кислород вытеснен ядовитым сероводородом, поэтому жизни здесь практически нет. Органический мир моря относительно бедный и однообразный. Жизненный слой его ограничен узкой поверхностью толщиной 150 м. Что касается наземных организмов, то они малочувствительны к газовому составу атмосферы, поскольку он постоянен.

В группу химических факторов входит и такой показатель, как соленость воды (содержание растворимых солей в природных водах). По количеству растворенных солей природные воды делятся на следующие категории: пресная вода — до 0,54 г/л, солоноватая — от 1 до 3, слабосоленая — от 3 до 10, соленая и очень соленая вода — от 10 до 50, рассол — более 50 г/л. Таким образом, в пресных водоемах суши (ручьях, реках, озерах) в 1 кг воды содержится до 1 г растворимых солей. Морская вода — сложный солевой раствор, средняя соленость которого составляет 35 г/кг воды, т.е. 3,5 %.

Живые организмы, обитающие в водной среде, приспособлены к строго определенной солености воды. Пресноводные формы не могут обитать в морях, морские не переносят опреснения. Если соленость воды изменяется, животные перемещаются в поисках благоприятной среды. Например, при опреснении поверхностных слоев моря после сильных дождей некоторые виды морских рачков опускаются на глубину до 10 м.

Личинки устриц обитают в солоноватых водах небольших заливов и эстуариев (полузамкнутые прибрежные водоемы, свободно сообщающиеся с океаном или морем). Личинки растут особенно быстро, когда соленость воды составляет 1,5-1,8 % (нечто среднее между пресной и соленой водой). При более высоком содержании солей их рост несколько подавляется. При снижении содержания солей рост подавляется уже заметно. При солености 0,25 % рост личинок прекращается, и все они гибнут.

Пирогенные факторы

К ним относятся факторы воздействия огня, или пожары. В настоящее время пожары рассматриваются как весьма значимый и один из естественных абиотических экологических факторов. При правильном использовании огонь может стать очень ценным экологическим инструментом.

На первый взгляд, пожары являются негативным фактором. Но наделе это не так. Без пожаров саванна, например, быстро исчезла бы и покрылась густым лесом. Однако этого не происходит, так как в огне гибнут нежные побеги деревьев. Поскольку деревья растут медленно, немногим из них удается выдержать пожары и вырасти достаточно высоко. Трава же растет быстро и так же быстро восстанавливается после пожаров.

Следует отмстить, что в отличие от других экологических факторов человек может регулировать пожары, в связи с чем они могут стать определенным ограничивающим фактором при распространении растений и животных. Контролируемые людьми пожары способствуют образованию богатой, полезной веществами золы. Смешиваясь с почвой, зола стимулирует рост растений, от количества которых зависит жизнь животных.

Кроме того, многие обитатели саванн, например африканский аист и птица-секретарь, используют пожары в своих целях. Они посещают границы естественных или контролируемых пожаров и поедают там насекомых и грызунов, которые спасаются от огня.

Возникновению пожаров могут способствовать как естественные факторы (удар молнии), так и случайные и неслучайные действия человека. Различают два типа пожаров. Наиболее трудно поддаются сдерживанию и регулированию верховые пожары. Чаще всего они весьма интенсивные и разрушают всю растительность и органику почвы. Такие пожары оказывают ограничивающее воздействие на многие организмы.

Низовые пожары , наоборот, обладают избирательным действием: для одних организмов они более губительны, для других — менее и, таким образом, способствуют развитию организмов с высокой устойчивостью к пожарам. Кроме того, небольшие низовые пожары дополняют действие бактерий, разлагая отмершие растения и ускоряя превращение минеральных элементов питания в форму, пригодную для использования новыми поколениями растений. В местообитаниях с малоплодородной почвой пожары способствуют обогащению ее зольными элементами и питательными веществами.

При достаточной влажности (прерии Северной Америки) пожары стимулируют рост трав за счет деревьев. Особенно важную регулирующую роль пожары играют в степях и саваннах. Здесь периодические пожары снижают вероятность вторжения пустынных кустарников.

Человек нередко является причиной увеличения частоты диких пожаров, хотя частное лицо не имеет права намеренно (даже случайно) вызывать пожар в природе. Вместе с тем использование огня специалистами — часть правильного землепользования.

Сигнал к началу осеннего перелета насекомоядных птиц

1) понижение температуры окружающей среды 2) сокращение светового дня
3) недостаток пищи 4) повышение влажности и давления

На численность белки в лесной зоне НЕ влияет

К абиотическим факторам относят

1) конкуренцию растений за поглощение света
2) влияние растений на жизнь животных
3) изменение температуры в течение суток
4) загрязнение окружающей среды человеком

Фактор, ограничивающий рост травянистых растений в еловом лесу, - недостаток

1) света 2) тепла 3) воды 4) минеральных веществ

Как называют фактор, который значительно отклоняется от оптимальной для вида величины

1) абиотический 2) биотический 3) антропогенный 4) ограничивающий

44. Какой фактор ограничивает жизнь растений в степной зоне?

1) высокая температура 2) недостаток влаги 3) отсутствие перегноя
4) избыток ультрафиолетовых лучей

Важнейшим абиотическим фактором, минерализующим органические остатки в биогеоценозе леса, являются

1) заморозки 2) пожары 3) ветры 4) дожди

К абиотическим факторам, определяющим численность популяции, относят

Главным ограничивающим фактором для жизни растений в Индийском океане является недостаток

1) света 2) тепла 3) минеральных солей 4) органических веществ

48. Что может стать ограничивающим фактором для жизни пятнистого оленя, живущего в Приморье на южных склонах гор?

1) глубокий снег 2) сильный ветер 3) недостаток хвойных деревьев

4) короткий день зимой

К абиотическим экологическим факторам относится

1) плодородность почвы 2) большое разнообразие растений
3) наличие хищников 4) температура воздуха

41. Любой экологический фактор может быть лимитирующим, но наиболее важными чаще оказываются:

1) влажность и пища

2) температура, для растений - наличие элементов минераль­ного питания

3) температура, вода, пища, для растений - наличие в почве биогенных элементов

42. Организмы с широким диапазоном толерантности - выносливости ~ называют:

1) стенобионтами, они практически не встречаются в природе

2) эврибионтами, они широко распространены в природе

3) эврибионтами, они редко встречаются в природе

43. Размер листьев одинаков в условиях, при которых:

1) темно - влажно и сухо - солнечно

2) темно - влажно и влажно - солнечно



3) сухо - солнечно и солнечно - влажно

44. Эколог-гидробиолог всегда имеет наготове прибор для опреде­ления количества кислорода, а эколог, изучающий наземные эко­системы, реже измеряет содержание кислорода, потому что:

1) В наземных местообитаниях кислород доступен живым су­ществам, в водных часто является лимитирующим фактором

2) В наземных экосистемах кислород является лимитирующим фактором, в водных практически всегда доступен

3) Как в наземных, так и в водных экосистемах кислород явля­ется лимитирующим фактором

45. Установите соответствие

ОСОБЕННОСТЬ ОБМЕНА ВЕЩЕСТВ ГРУППА ОРГАНИЗМОВ

А) выделение кислорода в атмосферу 1) автотрофы

Б) использование энергии, заключенной в пище, для синтеза АТФ 2) гетеротрофы

В) использование готовых органических веществ

Г) синтез органических веществ из неорганических

Д) использование углекислого газа для питания

Блок С. Дайте развернутый ответ на вопросы

1. Чем отличается наземно-воздушная среда от водной?

2. Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет, концентрацию углекислого газа, температуру. Почему эти факторы являются лимитирующими для реакций фотосинтеза?

3. В чём проявляются морфологические, физиологические и поведенческие адаптации к температуре среды у теплокровных животных?

4. Какие изменения биотических факторов могут привести к увеличению численности голого слизня, обитающего в лесу и питающегося преимущественно растениями?

5. На поверхности почвы иногда можно увидеть большое количество дождевых червей. Объясните, при каких метеорологических условиях это происходит и почему.

Температура. К абиотическим факторам среды относятся влажность, свет, лучистая энергия, воздух и его состав и другие неживые природные компоненты. Температура - экологический фактор.

По температуре тела все живые организмы делятся на пойкило- термные (с изменяющейся температурой тела в зависимости от температуры среды) и гомойотермные (организмы с постоянной температурой тела).

К пойкилотермной группе относятся растения, бактерии, вирусы, грибы, простейшие, рыбы, членистоногие и др.

К гомойотермной группе относятся птицы, млекопитающие и человек. Эти организмы регулируют температуру тела независимо от температуры окружающей среды.

По выносливости к низким температурам растения делятся на теплолюбивые и холодоустойчивые. К теплолюбивым относятся виноград, персик, урюк, груша и др., а к холодоустойчивым - мхи, лишайники, сосна, ель, пихта.

Для каждого отдельного организма существует температурный предел. Некоторые организмы устойчивы к колебаниям температуры. Например, рыбы живут при температуре -52°С, бактерии - при -80°С. Некоторые синезеленые водоросли выдерживают -44°С.

Отклонения температуры от постоянного уровня вызывают замедление обмена веществ и разрушение биохимических реакций в белке и постепенно приводят к кристаллизации клеток и полной остановке жизни.

У растений сформировались различные приспособления к колебаниям температуры среды:

1. Осенью уменьшается количество воды в клеточной цитоплазме растений, ее органоиды (глицерин, моносахариды и др.) сгущаются, тем самым приспосабливаются к низкой температуре и переходят в состояние покоя.

2.Зимой у растений наступает стадия покоя в виде споры, семян, клубня, луковицы, корня, корневищ. А крупные деревья сбрасывают листья, сгущается клеточный сок. Благодаря этому они способны переживать суровые условия зимовки.

3. Пойкилотермные животные при неблагоприятных условиях впадают в зимнюю спячку (состояние анабиоза). Анабиоз - это временное замедление обмена веществ и энергии, когда почти полностью отсутствуют все видимые проявления жизни. Зимняя спячка у некоторых организмов (медведи) связана с недостатком пищи.

Гомойотермные животные защищаются от низких температур различными способами:

1. Перемещение животных из холодных районов в теплые (птицы, некоторые млекопитающие).

2. Запасание большого количества жира и утолщение шерстяного покрова (волк, лиса, хищники, птицы, тюлени, кабаны и т. д.).

3. Впадают в зимнюю спячку (сурок, барсук, медведь, грызуны).

Влажность. Влажность также воздействует на организмы как

экологический фактор, чаще всего зависит от климата, температуры и природных зон. Иногда влажность выполняет роль лимитирующего фактора. Недостаток влаги влияет на урожай растений. Особенно недостаток влаги наблюдается в пустынных зонах, а в лесу и болотах, наоборот, ее избыток. В зависимости от влажности действует зональная закономерность на Земле.

Флора и фауна изменяются соответственно рельефу по географическим зонам: тундра, лесотундра, тайга, лесостепь, тропики, экватор. Классификация зон зависит от температуры и влажности.

Среди растений можно выделить экологические группы:

1. Ксерофиты (греч. xerox - "сухой", phytos - "расстояние") - растения засушливых местообитаний (пустыня, полупустыня, степь). Ксерофиты приспособлены к видоизменениям листьев, стеблей (саксаул, жузгун, полынь, хвойник, терескен, ковыль, солянка).

2. Суккуленты (лат. succulentus -"сочный") - форма светолюбивых ксерофитов. Листья, стебли утолщены и видоизменены в колючки.

3. Мезофиты (греч. mesos - "промежуточный") - растут в относительно влажных районах. Листья крупные (береза, груша, луговые травы).

4. Гигрофиты (греч. hygros - "влажный") - растения, растущие в условиях избыточной влажности. Это тростник, рис, кувшинка.

5. Гидрофиты (греч. hudor - "вода") - водные растения, погруженные в воду. К ним относятся элодея, водоросли.

Влажность также играет важную роль в жизни животных. Их разделяют на наземные, водные и земноводные. В свою очередь, наземные животные делятся на лесные, степные, пустынные.

Водные животные - это рыбы, водные млекопитающие (киты, дельфины), членистоногие, губки, моллюски, черви.

Наземные животные-млекопитающие, птицы, пресмыкающиеся, насекомые.

Земноводные - лягушки, морские черепахи и др. В связи с потеплением климата на Земле в последнее время наблюдаются факты повышения средней температуры. Повышение температуры может привести к снижению влажности в природных зонах и превращению экосистем в пустыни. Особенно это заметно в засушливых районах Средней Азии, Казахстана, Малой Азии, Африки, где возможно увеличение объема антропогенных ландшафтов.

Безусловно, это приведет к значительному социально-экономическому ущербу названных стран.

1. Среди абиотических факторов температура и влажность играют основную роль.

2. Соответственно сформированы экологические группы растений и животных.

3. Большое влияние на формирование географических зон на Земле оказывают влажность и температура.

1. Необходима ли температура для живых организмов?

2. На какие экологические группы делятся животные в зависимости от температуры тела? Приведите примеры.

3. Назовите экологические группы растений и приведите примеры.

4. Как классифицируются растения по влажности?

1. Назовите растения засушливых мест и объясните их морфологические особенности.

2. Верблюд может выдержать без воды 40 дней. Чем это объясняется?

Как регулируется питание организмов в состоянии анабиоза?

Как меняется дыхание организмов в зависимости от влажности?

Назовите экологические группы, зависящие от биотических факторов и взаимосвязей организмов.

Тест «Абиотические факторы среды»

1. Сигнал к началу осеннего перелета насекомоядных птиц:

1) понижение температуры окружающей среды

2) сокращение светового дня

3) недостаток пищи

4) повышение влажности и давления

2. На численность белки в лесной зоне НЕ влияет:

1) смена холодных и теплых зим

2) урожай еловых шишек

3) численность хищников

3. К абиотическим факторам относят:

1) конкуренцию растений за поглощение света

2) влияние растений на жизнь животных

3) изменение температуры в течение суток

4) загрязнение окружающей среды человеком

4. Фактор, ограничивающий рост травянистых растений в еловом лесу, - недостаток:

4) минеральных веществ

5. Как называют фактор, который значительно отклоняется от оптимальной для вида величины:

1) абиотический

2) биотический

3) антропогенный

4) ограничивающий

6. Сигналом к наступлению листопада у растений служит:

1) увеличение влажности среды

2) сокращение длины светового дня

3) уменьшение влажности среды

4) повышение температуры среды

7. Ветер, осадки, пыльные бури - это факторы:

1) антропогенные

2) биотические

3) абиотические

4) ограничивающие

8. Реакцию организмов на изменение длины светового дня называют:

1) микроэволюционными изменениями

2) фотопериодизмом

3) фототропизмом

4) безусловным рефлексом

9. К абиотическим факторам среды относят:

1) подрывание кабанами корней

2) нашествие саранчи

3) образование колоний птиц

4) обильный снегопад

10. Из перечисленных явлений к суточным биоритмам относят:

1) миграции морских рыб на нерест

2) открывание и закрывание цветков покрытосеменных растений

3) распускание почек у деревьев и кустарников

4) открывание и закрывание раковин у моллюсков

11. Какой фактор ограничивает жизнь растений в степной зоне?

1) высокая температура

2) недостаток влаги

3) отсутствие перегноя

4) избыток ультрафиолетовых лучей

12. Важнейшим абиотическим фактором, минерализующим органические остатки в биогеоценозе леса, являются:

1) заморозки

13. К абиотическим факторам, определяющим численность популяции, относят:

1) межвидовую конкуренцию

3) понижение плодовитости

4) влажность

14. Главным ограничивающим фактором для жизни растений в Индийском океане является недостаток:

3) минеральных солей

4) органических веществ

15. К абиотическим экологическим факторам относится:

1) плодородность почвы

2) большое разнообразие растений

3) наличие хищников

4) температура воздуха

16. Реакция организмов на продолжительность дня называется:

1) фототропизмом

2) гелиотропизмом

3) фотопериодизмом

4) фототаксисом

17. Какой из факторов регулирует сезонные явления в жизни растений и животных?

1) смена температуры

2) уровень влажности воздуха

3) наличие убежища

4) продолжительность дня и ночи

Ответы: 1 – 2; 2 – 1; 3 – 3; 4 – 1; 5 – 4;

6 – 2; 7 – 3; 8 – 2; 9 – 4; 10 – 2; 11 – 2;

12 – 2; 13 – 4; 14 – 1; 15 – 4; 16 – 3;

17 – 4; 18 – 4; 19 – 1; 20 – 4; 21 – 2.

18. Какой из перечисленных ниже факторов неживой природы наиболее существенно влияет на распространение земноводных?

3) давление воздуха

4) влажность

19. Культурные растения плохо растут на заболоченной почве, так как в ней:

1) недостаточное содержание кислорода

2) происходит образование метана

3) избыточное содержание органических веществ

4) содержится много торфа

20. Какое приспособление способствует охлаждению растений при повышении температуры воздуха?

1) уменьшение скорости обмена веществ

2) увеличение интенсивности фотосинтеза

3) уменьшение интенсивности дыхания

4) усиление испарения воды

21. Какое приспособление у теневыносливых растений обеспечивает более эффективное и полное поглощение солнечного света?

1) мелкие листья

2) крупные листья

3) шипы и колючки

4) восковой налёт на листьях