วิธีค้นหา n ในการก้าวหน้าทางคณิตศาสตร์  พีชคณิต: ความก้าวหน้าทางคณิตศาสตร์และเรขาคณิต

ความก้าวหน้าทางคณิตศาสตร์ตั้งชื่อลำดับของตัวเลข (เงื่อนไขของความก้าวหน้า)

ซึ่งแต่ละเทอมต่อมาจะแตกต่างจากเทอมก่อนหน้าด้วยเทอมใหม่ซึ่งเรียกอีกอย่างว่า ความแตกต่างของขั้นตอนหรือความก้าวหน้า.

ดังนั้น โดยการระบุขั้นตอนความก้าวหน้าและเทอมแรก คุณสามารถค้นหาองค์ประกอบใด ๆ ของมันได้โดยใช้สูตร

คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์

1) สมาชิกแต่ละคนของการก้าวหน้าทางคณิตศาสตร์ เริ่มจากเลขตัวที่สอง คือค่าเฉลี่ยเลขคณิตของสมาชิกรายก่อนหน้าและรายถัดไปของการก้าวหน้า

การสนทนาก็เป็นจริงเช่นกัน ถ้าค่าเฉลี่ยเลขคณิตของเทอมคี่ (คู่) ที่อยู่ติดกันของการก้าวหน้าเท่ากับเทอมที่อยู่ระหว่างเทอมเหล่านั้น ลำดับของตัวเลขนี้ก็คือความก้าวหน้าทางคณิตศาสตร์ การใช้คำสั่งนี้ ทำให้ง่ายต่อการตรวจสอบลำดับใดๆ

นอกจากนี้ ด้วยคุณสมบัติของความก้าวหน้าทางคณิตศาสตร์ สูตรข้างต้นสามารถสรุปได้ดังต่อไปนี้

วิธีนี้ง่ายต่อการตรวจสอบหากคุณเขียนพจน์ทางด้านขวาของเครื่องหมายเท่ากับ

มักใช้ในทางปฏิบัติเพื่อลดความซับซ้อนในการคำนวณปัญหา

2) ผลรวมของเงื่อนไข n แรกของความก้าวหน้าทางคณิตศาสตร์คำนวณโดยใช้สูตร

จำสูตรสำหรับผลรวมของความก้าวหน้าทางคณิตศาสตร์ไว้ซึ่งเป็นสิ่งที่ขาดไม่ได้ในการคำนวณและมักพบในสถานการณ์ชีวิตที่เรียบง่าย

3) หากคุณต้องการค้นหาไม่ใช่ผลรวมทั้งหมด แต่เป็นส่วนหนึ่งของลำดับที่เริ่มต้นจากเทอมที่ k สูตรผลรวมต่อไปนี้จะเป็นประโยชน์สำหรับคุณ

4) สิ่งที่น่าสนใจในทางปฏิบัติคือการหาผลรวมของเงื่อนไข n ของการก้าวหน้าทางคณิตศาสตร์โดยเริ่มจากเลข k เมื่อต้องการทำเช่นนี้ ให้ใช้สูตร

นี่เป็นการสรุปเนื้อหาทางทฤษฎีและไปสู่การแก้ปัญหาทั่วไปในทางปฏิบัติ

ตัวอย่างที่ 1 ค้นหาเทอมที่สี่สิบของความก้าวหน้าทางคณิตศาสตร์ 4;7;...

สารละลาย:

ตามเงื่อนไขที่เรามี

เรามากำหนดขั้นตอนความก้าวหน้ากันดีกว่า

ด้วยการใช้สูตรที่รู้จักกันดี เราจะพบระยะที่สี่สิบของความก้าวหน้า

ตัวอย่างที่ 2 ความก้าวหน้าทางคณิตศาสตร์กำหนดไว้ในเทอมที่สามและเจ็ด ค้นหาเทอมแรกของความก้าวหน้าและผลรวมของสิบ

สารละลาย:

ให้เราเขียนองค์ประกอบที่กำหนดของความก้าวหน้าโดยใช้สูตร

เราลบสมการแรกออกจากสมการที่สอง ผลก็คือเราพบขั้นตอนการก้าวหน้า

เราแทนค่าที่พบลงในสมการใดๆ เพื่อค้นหาเทอมแรกของความก้าวหน้าทางคณิตศาสตร์

เราคำนวณผลรวมของเงื่อนไขสิบข้อแรกของความก้าวหน้า

เราพบปริมาณที่ต้องการทั้งหมดโดยไม่ต้องใช้การคำนวณที่ซับซ้อน

ตัวอย่างที่ 3 ความก้าวหน้าทางคณิตศาสตร์กำหนดโดยตัวส่วนและหนึ่งในเงื่อนไขของมัน ค้นหาเทอมแรกของความก้าวหน้า ผลรวมของ 50 เทอมโดยเริ่มจาก 50 และผลรวมของ 100 เทอมแรก

สารละลาย:

มาเขียนสูตรสำหรับองค์ประกอบที่ร้อยของความก้าวหน้ากัน

และหาอันแรก

จากข้อแรก เราจะพบระยะที่ 50 ของความก้าวหน้า

การหาผลรวมของส่วนของความก้าวหน้า

และผลรวมของ 100 ตัวแรก

จำนวนความก้าวหน้าคือ 250

ตัวอย่างที่ 4

ค้นหาจำนวนพจน์ของความก้าวหน้าทางคณิตศาสตร์หาก:

a3-a1=8, a2+a4=14, Sn=111

สารละลาย:

เรามาเขียนสมการในรูปของเทอมแรกและขั้นตอนการก้าวหน้าแล้วพิจารณากัน

เราแทนค่าที่ได้รับลงในสูตรผลรวมเพื่อกำหนดจำนวนคำศัพท์ในผลรวม

เราดำเนินการลดความซับซ้อน

และแก้สมการกำลังสอง

จากค่าทั้งสองที่พบ มีเพียงหมายเลข 8 เท่านั้นที่เหมาะกับเงื่อนไขของปัญหา ดังนั้น ผลรวมของแปดเทอมแรกของการก้าวหน้าคือ 111

ตัวอย่างที่ 5

แก้สมการ

1+3+5+...+x=307.

วิธีแก้: สมการนี้คือผลรวมของความก้าวหน้าทางคณิตศาสตร์ ลองเขียนเทอมแรกออกมาแล้วค้นหาความแตกต่างในความก้าวหน้า

บางคนปฏิบัติต่อคำว่า "ความก้าวหน้า" ด้วยความระมัดระวัง เนื่องจากเป็นคำที่ซับซ้อนมากจากสาขาคณิตศาสตร์ระดับสูง ในขณะเดียวกันความก้าวหน้าทางคณิตศาสตร์ที่ง่ายที่สุดคือการทำงานของมิเตอร์แท็กซี่ (ซึ่งยังคงมีอยู่) และการทำความเข้าใจแก่นแท้ (และในวิชาคณิตศาสตร์ไม่มีอะไรสำคัญไปกว่า "การเข้าใจแก่นแท้") ของลำดับเลขคณิตนั้นไม่ใช่เรื่องยากโดยวิเคราะห์แนวคิดเบื้องต้นบางประการ

ลำดับตัวเลขทางคณิตศาสตร์

ลำดับตัวเลขมักเรียกว่าชุดตัวเลข ซึ่งแต่ละชุดมีหมายเลขของตัวเอง

1 เป็นสมาชิกตัวแรกของลำดับ

และ 2 คือเทอมที่สองของลำดับ

และ 7 เป็นสมาชิกตัวที่เจ็ดของลำดับ

และ n เป็นสมาชิกตัวที่ n ของลำดับ

อย่างไรก็ตามไม่มีชุดตัวเลขและตัวเลขใด ๆ ที่น่าสนใจสำหรับเรา เราจะมุ่งความสนใจไปที่ลำดับตัวเลขซึ่งค่าของเทอมที่ n สัมพันธ์กับเลขลำดับด้วยความสัมพันธ์ที่สามารถกำหนดสูตรทางคณิตศาสตร์ได้อย่างชัดเจน กล่าวอีกนัยหนึ่ง: ค่าตัวเลขของตัวเลขที่ n คือฟังก์ชันบางอย่างของ n

a คือค่าของสมาชิกของลำดับตัวเลข

n คือหมายเลขประจำเครื่อง

f(n) คือฟังก์ชัน โดยที่เลขลำดับในลำดับตัวเลข n คืออาร์กิวเมนต์

คำนิยาม

ความก้าวหน้าทางคณิตศาสตร์มักเรียกว่าลำดับตัวเลข ซึ่งแต่ละเทอมต่อมาจะมากกว่า (น้อยกว่า) กว่าเทอมก่อนหน้าด้วยจำนวนเดียวกัน สูตรสำหรับเทอมที่ n ของลำดับเลขคณิตมีดังนี้:

n - ค่าของสมาชิกปัจจุบันของความก้าวหน้าทางคณิตศาสตร์

n+1 - สูตรของตัวเลขถัดไป

d - ความแตกต่าง (จำนวนหนึ่ง)

เป็นเรื่องง่ายที่จะตัดสินว่าหากผลต่างเป็นบวก (d>0) สมาชิกลำดับต่อมาของซีรีส์ที่กำลังพิจารณาจะมีค่ามากกว่าชุดก่อนหน้า และความก้าวหน้าทางคณิตศาสตร์ดังกล่าวจะเพิ่มขึ้น

ในกราฟด้านล่าง จะเห็นได้ง่ายว่าทำไมลำดับตัวเลขจึงเรียกว่า "การเพิ่มขึ้น"

ในกรณีที่ผลต่างเป็นลบ (ง<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

ค่าสมาชิกที่ระบุ

บางครั้งมีความจำเป็นต้องกำหนดค่าของคำศัพท์ใดก็ได้ a n ของความก้าวหน้าทางคณิตศาสตร์ ซึ่งสามารถทำได้โดยการคำนวณค่าของสมาชิกทั้งหมดของความก้าวหน้าทางคณิตศาสตร์ตามลำดับโดยเริ่มจากค่าแรกไปจนถึงค่าที่ต้องการ อย่างไรก็ตาม เส้นทางนี้ไม่เป็นที่ยอมรับเสมอไป ตัวอย่างเช่น จำเป็นต้องค้นหาค่าของเทอมห้าพันหรือแปดล้าน การคำนวณแบบเดิมจะใช้เวลานาน อย่างไรก็ตาม สามารถศึกษาความก้าวหน้าทางคณิตศาสตร์ที่เฉพาะเจาะจงได้โดยใช้สูตรบางอย่าง นอกจากนี้ยังมีสูตรสำหรับเทอมที่ n: ค่าของเทอมใด ๆ ของความก้าวหน้าทางคณิตศาสตร์สามารถกำหนดเป็นผลรวมของเทอมแรกของความก้าวหน้าด้วยผลต่างของความก้าวหน้าคูณด้วยจำนวนเทอมที่ต้องการลดลงด้วย หนึ่ง.

สูตรนี้เป็นสูตรสากลสำหรับการเพิ่มและลดความก้าวหน้า

ตัวอย่างการคำนวณค่าของคำที่กำหนด

ให้เราแก้ปัญหาต่อไปนี้ในการค้นหาค่าของเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์

เงื่อนไข: มีความก้าวหน้าทางคณิตศาสตร์พร้อมพารามิเตอร์:

เทอมแรกของลำดับคือ 3;

ผลต่างในชุดตัวเลขคือ 1.2

ภารกิจ: คุณต้องค้นหาค่าของคำศัพท์ 214 คำ

วิธีแก้ไข: เพื่อระบุค่าของคำที่กำหนด เราใช้สูตร:

ก(n) = a1 + d(n-1)

แทนที่ข้อมูลจากคำชี้แจงปัญหาลงในนิพจน์ เรามี:

ก(214) = a1 + d(n-1)

ก(214) = 3 + 1.2 (214-1) = 258.6

คำตอบ: เทอมที่ 214 ของลำดับมีค่าเท่ากับ 258.6

ข้อดีของวิธีการคำนวณนี้ชัดเจน - โซลูชันทั้งหมดใช้เวลาไม่เกิน 2 บรรทัด

ผลรวมของจำนวนเงื่อนไขที่กำหนด

บ่อยครั้งในชุดเลขคณิตที่กำหนดมีความจำเป็นต้องกำหนดค่ารวมของค่าของบางเซ็กเมนต์ ในการทำเช่นนี้ไม่จำเป็นต้องคำนวณค่าของแต่ละเทอมแล้วบวกเข้าด้วยกัน วิธีการนี้ใช้ได้หากจำนวนคำศัพท์ที่ต้องการหาผลรวมมีน้อย ในกรณีอื่นๆ จะสะดวกกว่าถ้าใช้สูตรต่อไปนี้

ผลรวมของเงื่อนไขของการก้าวหน้าทางคณิตศาสตร์จาก 1 ถึง n เท่ากับผลรวมของเทอมที่หนึ่งและที่ n คูณด้วยจำนวนของเทอม n แล้วหารด้วยสอง หากในสูตรค่าของเทอมที่ n ถูกแทนที่ด้วยนิพจน์จากย่อหน้าก่อนหน้าของบทความเราจะได้รับ:

ตัวอย่างการคำนวณ

ตัวอย่างเช่น เรามาแก้ปัญหาโดยมีเงื่อนไขต่อไปนี้:

พจน์แรกของลำดับคือศูนย์

ความแตกต่างคือ 0.5

ปัญหานี้จำเป็นต้องพิจารณาผลรวมของเงื่อนไขของอนุกรมตั้งแต่ 56 ถึง 101

สารละลาย. ลองใช้สูตรเพื่อกำหนดจำนวนความก้าวหน้า:

s(n) = (2∙a1 + d∙(n-1))∙n/2

ขั้นแรกเรากำหนดค่าผลรวมของเงื่อนไข 101 ของความก้าวหน้าโดยการแทนที่เงื่อนไขที่กำหนดของปัญหาของเราลงในสูตร:

วินาที 101 = (2∙0 + 0.5∙(101-1))∙101/2 = 2,525

เห็นได้ชัดว่าเพื่อที่จะหาผลรวมของเงื่อนไขของความก้าวหน้าตั้งแต่วันที่ 56 ถึง 101 จำเป็นต้องลบ S 55 ออกจาก S 101

วินาที 55 = (2∙0 + 0.5∙(55-1))∙55/2 = 742.5

ดังนั้น ผลรวมของความก้าวหน้าทางคณิตศาสตร์สำหรับตัวอย่างนี้คือ:

ส 101 - ส 55 = 2,525 - 742.5 = 1,782.5

ตัวอย่างการประยุกต์ใช้ความก้าวหน้าทางคณิตศาสตร์ในทางปฏิบัติ

ในตอนท้ายของบทความ กลับไปที่ตัวอย่างลำดับเลขคณิตที่ให้ไว้ในย่อหน้าแรก - เครื่องวัดระยะทาง (มิเตอร์รถแท็กซี่) ลองพิจารณาตัวอย่างนี้

การขึ้นแท็กซี่ (ซึ่งรวมการเดินทาง 3 กม.) มีค่าใช้จ่าย 50 รูเบิล แต่ละกิโลเมตรถัดไปจะจ่ายในอัตรา 22 รูเบิล/กม. ระยะทางเดินทาง 30 กม. คำนวณค่าใช้จ่ายในการเดินทาง

1. ทิ้ง 3 กม. แรก ซึ่งราคาดังกล่าวรวมอยู่ในค่าลงจอดแล้ว

30 - 3 = 27 กม.

2. การคำนวณเพิ่มเติมนั้นไม่มีอะไรมากไปกว่าการแยกวิเคราะห์ชุดเลขคณิต

หมายเลขสมาชิก - จำนวนกิโลเมตรที่เดินทาง (ลบสามตัวแรก)

มูลค่าของสมาชิกคือผลรวม

เทอมแรกในปัญหานี้จะเท่ากับ 1 = 50 รูเบิล

ความแตกต่างความก้าวหน้า d = 22 r.

จำนวนที่เราสนใจคือค่าของเทอมที่ (27+1) ของความก้าวหน้าทางคณิตศาสตร์ - การอ่านมิเตอร์เมื่อสิ้นสุดกิโลเมตรที่ 27 เท่ากับ 27.999... = 28 กม.

ก 28 = 50 + 22 ∙ (28 - 1) = 644

การคำนวณข้อมูลปฏิทินเป็นระยะเวลานานโดยพลการจะขึ้นอยู่กับสูตรที่อธิบายลำดับตัวเลขบางอย่าง ในทางดาราศาสตร์ ความยาวของวงโคจรจะขึ้นอยู่กับระยะห่างของวัตถุท้องฟ้าถึงดาวฤกษ์ในเชิงเรขาคณิต นอกจากนี้ ชุดตัวเลขต่างๆ ยังสามารถนำมาใช้ในสถิติและสาขาวิชาคณิตศาสตร์ประยุกต์อื่นๆ ได้สำเร็จอีกด้วย

ลำดับตัวเลขอีกประเภทหนึ่งคือเรขาคณิต

ความก้าวหน้าทางเรขาคณิตมีลักษณะเฉพาะด้วยอัตราการเปลี่ยนแปลงที่สูงกว่าเมื่อเปรียบเทียบกับความก้าวหน้าทางคณิตศาสตร์ ไม่ใช่เรื่องบังเอิญที่ในการเมือง สังคมวิทยา และการแพทย์ เพื่อแสดงความเร็วของการแพร่กระจายของปรากฏการณ์เฉพาะ เช่น โรคในระหว่างการแพร่ระบาด พวกเขากล่าวว่ากระบวนการพัฒนาเป็นความก้าวหน้าทางเรขาคณิต

เทอมที่ N ของชุดตัวเลขเรขาคณิตแตกต่างจากชุดก่อนหน้าตรงที่คูณด้วยจำนวนคงที่บางตัว - ตัวส่วนเช่นเทอมแรกคือ 1 ตัวส่วนจะเท่ากับ 2 ตามลำดับดังนั้น:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

bn - ค่าของเทอมปัจจุบันของความก้าวหน้าทางเรขาคณิต

b n+1 - สูตรของเทอมถัดไปของความก้าวหน้าทางเรขาคณิต

q เป็นตัวหารของความก้าวหน้าทางเรขาคณิต (จำนวนคงที่)

หากกราฟของความก้าวหน้าทางคณิตศาสตร์เป็นเส้นตรง ความก้าวหน้าทางเรขาคณิตจะวาดภาพที่แตกต่างออกไปเล็กน้อย:

เช่นเดียวกับในกรณีของเลขคณิต ความก้าวหน้าทางเรขาคณิตมีสูตรสำหรับค่าของคำใดๆ ก็ตาม เทอมที่ n ใดๆ ของความก้าวหน้าทางเรขาคณิตจะเท่ากับผลคูณของเทอมแรกและตัวส่วนของความก้าวหน้ากำลังของ n ลดลง 1:

ตัวอย่าง. เรามีความก้าวหน้าทางเรขาคณิตโดยเทอมแรกเท่ากับ 3 และตัวส่วนของความก้าวหน้าเท่ากับ 1.5 มาหาความก้าวหน้าระยะที่ 5 กัน

ข 5 = ข 1 ∙ คิว (5-1) = 3 ∙ 1.5 4 = 15.1875

ผลรวมของจำนวนคำศัพท์ที่กำหนดจะคำนวณโดยใช้สูตรพิเศษด้วย ผลรวมของเทอม n แรกของความก้าวหน้าทางเรขาคณิตเท่ากับผลต่างระหว่างผลคูณของเทอมที่ n ของความก้าวหน้าและตัวส่วนกับเทอมแรกของความก้าวหน้า หารด้วยตัวส่วนลดลงหนึ่ง:

หากแทนที่ bn โดยใช้สูตรที่กล่าวไว้ข้างต้น ค่าของผลรวมของเทอม n แรกของชุดตัวเลขที่พิจารณาจะอยู่ในรูปแบบ:

ตัวอย่าง. ความก้าวหน้าทางเรขาคณิตเริ่มต้นด้วยเทอมแรกเท่ากับ 1 ตัวส่วนถูกกำหนดให้เป็น 3 ลองหาผลรวมของแปดเทอมแรกกัน

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280

I.V. Yakovlev | สื่อคณิตศาสตร์ | MathUs.ru

ความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าทางคณิตศาสตร์เป็นลำดับประเภทพิเศษ ดังนั้น ก่อนที่จะนิยามความก้าวหน้าทางคณิตศาสตร์ (และเรขาคณิต) เราจำเป็นต้องพูดคุยสั้นๆ เกี่ยวกับแนวคิดที่สำคัญของลำดับตัวเลข

ลำดับต่อมา

ลองนึกภาพอุปกรณ์บนหน้าจอซึ่งมีตัวเลขจำนวนหนึ่งแสดงเรียงกัน สมมติว่า 2; 7; 13; 1; 6; 0; 3; : : : ชุดตัวเลขนี้เป็นตัวอย่างหนึ่งของลำดับอย่างชัดเจน

คำนิยาม. ลำดับตัวเลขคือชุดตัวเลขซึ่งแต่ละหมายเลขสามารถกำหนดหมายเลขเฉพาะได้ (นั่นคือ เชื่อมโยงกับจำนวนธรรมชาติตัวเดียว)1 จำนวน n เรียกว่าพจน์ที่ n ของลำดับ

ในตัวอย่างข้างต้น ตัวเลขตัวแรกคือ 2 นี่คือสมาชิกตัวแรกของลำดับ ซึ่งสามารถเขียนแทนด้วย a1 ได้ เลข 5 มีเลข 6 คือพจน์ที่ 5 ของลำดับ ซึ่งสามารถเขียนแทนด้วย a5 เลย เทอมที่ nลำดับจะแสดงด้วย (หรือ bn, cn ฯลฯ)

สถานการณ์ที่สะดวกมากคือเมื่อบางสูตรสามารถระบุเทอมที่ n ของลำดับได้ ตัวอย่างเช่น สูตร an = 2n 3 ระบุลำดับ: 1; 1; 3; 5; 7; : : : สูตร an = (1)n ระบุลำดับ: 1; 1; 1; 1; : : :

ไม่ใช่ทุกชุดของตัวเลขที่เป็นลำดับ ดังนั้นเซกเมนต์จึงไม่ใช่ลำดับ มันมีตัวเลข "มากเกินไป" ที่จะจัดลำดับใหม่ เซต R ของจำนวนจริงทั้งหมดก็ไม่ใช่ลำดับเช่นกัน ข้อเท็จจริงเหล่านี้ได้รับการพิสูจน์แล้วในระหว่างการวิเคราะห์ทางคณิตศาสตร์

ความก้าวหน้าทางคณิตศาสตร์: คำจำกัดความพื้นฐาน

ตอนนี้เราพร้อมที่จะกำหนดความก้าวหน้าทางคณิตศาสตร์แล้ว

คำนิยาม. ความก้าวหน้าทางคณิตศาสตร์คือลำดับที่แต่ละเทอม (เริ่มจากวินาที) เท่ากับผลรวมของเทอมก่อนหน้าและจำนวนคงที่จำนวนหนึ่ง (เรียกว่าผลต่างของความก้าวหน้าทางคณิตศาสตร์)

ตัวอย่างเช่น ลำดับที่ 2; 5; 8; สิบเอ็ด; : : : เป็นความก้าวหน้าทางคณิตศาสตร์ที่มีเทอมแรก 2 และผลต่าง 3 ลำดับที่ 7; 2; 3; 8; : : : เป็นความก้าวหน้าทางคณิตศาสตร์ที่มีเทอมแรก 7 และผลต่าง 5 ลำดับที่ 3; 3; 3; : : : คือความก้าวหน้าทางคณิตศาสตร์ที่มีผลต่างเท่ากับศูนย์

คำจำกัดความที่เท่ากัน: ลำดับ an เรียกว่าความก้าวหน้าทางคณิตศาสตร์ ถ้าผลต่าง an+1 an เป็นค่าคงที่ (ไม่ขึ้นอยู่กับ n)

ความก้าวหน้าทางคณิตศาสตร์เรียกว่าเพิ่มขึ้นหากผลต่างเป็นบวก และลดลงหากผลต่างเป็นลบ

1 แต่นี่เป็นคำจำกัดความที่กระชับกว่านี้: ลำดับคือฟังก์ชันที่กำหนดบนเซตของจำนวนธรรมชาติ ตัวอย่างเช่น ลำดับของจำนวนจริงคือฟังก์ชัน f: N ! ร.

ตามค่าเริ่มต้น ลำดับจะถือว่าไม่มีที่สิ้นสุด กล่าวคือ มีจำนวนตัวเลขที่ไม่สิ้นสุด แต่ไม่มีใครมารบกวนเราให้พิจารณาลำดับอันจำกัด ที่จริงแล้ว ชุดจำนวนจำกัดใดๆ ก็สามารถเรียกได้ว่าเป็นลำดับจำกัด ตัวอย่างเช่น ลำดับตอนจบคือ 1; 2; 3; 4; 5 ประกอบด้วยตัวเลขห้าตัว

สูตรสำหรับเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์

เป็นเรื่องง่ายที่จะเข้าใจว่าความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยตัวเลขสองตัว: เทอมแรกและผลต่าง ดังนั้นคำถามจึงเกิดขึ้น: เมื่อรู้เทอมแรกและความแตกต่างแล้วจะค้นหาคำศัพท์โดยพลการของความก้าวหน้าทางคณิตศาสตร์ได้อย่างไร?

ไม่ใช่เรื่องยากที่จะได้รับสูตรที่จำเป็นสำหรับเทอมที่ n ของความก้าวหน้าทางคณิตศาสตร์ ให้อัน

ความก้าวหน้าทางคณิตศาสตร์ที่มีผลต่าง d เรามี:

อัน+1 = อัน + ดี (n = 1; 2; : : :):

โดยเฉพาะเราเขียนว่า:

ก2 = ก1 + ง;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

และตอนนี้ก็ชัดเจนว่าสูตรของ an คือ:

อัน = a1 + (n 1)d:

ปัญหาที่ 1 ในความก้าวหน้าทางคณิตศาสตร์ 2; 5; 8; สิบเอ็ด; : : : หาสูตรของเทอมที่ n แล้วคำนวณเทอมที่ร้อย

สารละลาย. ตามสูตร (1) เรามี:

อัน = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

คุณสมบัติและเครื่องหมายของความก้าวหน้าทางคณิตศาสตร์

คุณสมบัติของความก้าวหน้าทางคณิตศาสตร์ ในความก้าวหน้าทางคณิตศาสตร์ a สำหรับใดๆ

กล่าวอีกนัยหนึ่ง สมาชิกแต่ละคนของการก้าวหน้าทางคณิตศาสตร์ (เริ่มจากวินาที) คือค่าเฉลี่ยเลขคณิตของสมาชิกที่อยู่ใกล้เคียง

การพิสูจน์. เรามี:

ไม่มี 1+ และ n+1

(และง) + (และ + ง)

ซึ่งเป็นสิ่งที่จำเป็น

โดยทั่วไปแล้ว การก้าวหน้าทางคณิตศาสตร์จะเป็นไปตามความเท่าเทียมกัน

n = n k+ n+k

สำหรับ n > 2 ใดๆ และ k ตามธรรมชาติใดๆ< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

ปรากฎว่าสูตร (2) ไม่เพียงทำหน้าที่เป็นเงื่อนไขที่จำเป็นเท่านั้น แต่ยังเป็นเงื่อนไขที่เพียงพอสำหรับลำดับที่จะเป็นความก้าวหน้าทางคณิตศาสตร์อีกด้วย

สัญญาณความก้าวหน้าทางคณิตศาสตร์ หากความเท่าเทียมกัน (2) ยังคงอยู่สำหรับ n > 2 ทั้งหมด ดังนั้นลำดับ an จะเป็นความก้าวหน้าทางคณิตศาสตร์

การพิสูจน์. ลองเขียนสูตร (2) ใหม่ดังนี้:

นา n 1= n+1a n:

จากนี้เราจะเห็นว่าความแตกต่าง an+1 an ไม่ได้ขึ้นอยู่กับ n และนี่หมายความว่าลำดับ an เป็นความก้าวหน้าทางคณิตศาสตร์อย่างแม่นยำ

คุณสมบัติและเครื่องหมายของความก้าวหน้าทางคณิตศาสตร์สามารถกำหนดได้ในรูปแบบของคำสั่งเดียว เพื่อความสะดวกเราจะทำเช่นนี้กับตัวเลขสามตัว (ซึ่งเป็นสถานการณ์ที่มักเกิดปัญหา)

ลักษณะของความก้าวหน้าทางคณิตศาสตร์ ตัวเลขสามตัว a, b, c ก่อให้เกิดความก้าวหน้าทางคณิตศาสตร์ หาก 2b = a + c เท่านั้น

ปัญหาที่ 2 (MSU คณะเศรษฐศาสตร์, 2550) ตัวเลข 3 ตัว 8x, 3 x2 และ 4 ตามลำดับที่ระบุก่อให้เกิดความก้าวหน้าทางคณิตศาสตร์ที่ลดลง ค้นหา x และระบุความแตกต่างของความก้าวหน้านี้

สารละลาย. โดยคุณสมบัติของความก้าวหน้าทางคณิตศาสตร์ที่เรามี:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

ถ้า x = 1 เราจะมีความก้าวหน้าลดลงเป็น 8, 2, 4 โดยมีผลต่าง 6 ถ้า x = 5 เราจะมีความก้าวหน้าเพิ่มขึ้นเป็น 40, 22, 4; กรณีนี้ไม่เหมาะ

คำตอบ: x = 1 ผลต่างคือ 6

ผลรวมของเทอม n แรกของความก้าวหน้าทางคณิตศาสตร์

ตำนานเล่าว่าวันหนึ่งครูบอกให้เด็กๆ หาผลรวมของตัวเลขตั้งแต่ 1 ถึง 100 แล้วนั่งลงเงียบๆ เพื่ออ่านหนังสือพิมพ์ อย่างไรก็ตาม ภายในไม่กี่นาที เด็กชายคนหนึ่งบอกว่าเขาได้แก้ไขปัญหาแล้ว นี่คือคาร์ล ฟรีดริช เกาส์ วัย 9 ขวบ ซึ่งต่อมาเป็นหนึ่งในนักคณิตศาสตร์ที่ยิ่งใหญ่ที่สุดในประวัติศาสตร์

แนวคิดของเกาส์น้อยมีดังนี้ อนุญาต

ส = 1 + 2 + 3 + : : : + 98 + 99 + 100:

ลองเขียนจำนวนเงินนี้ในลำดับย้อนกลับ:

ส = 100 + 99 + 98 + : : : + 3 + 2 + 1;

และเพิ่มสองสูตรนี้:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

แต่ละเทอมในวงเล็บมีค่าเท่ากับ 101 และมีทั้งหมด 100 เทอม ดังนั้น

2S = 101 100 = 10100;

เราใช้แนวคิดนี้เพื่อหาสูตรผลรวม

S = a1 + a2 + : : : + an + an: (3)

ได้รับการดัดแปลงที่เป็นประโยชน์ของสูตร (3) หากเราแทนที่สูตรของเทอมที่ n an = a1 + (n 1)d ลงไป:

2a1 + (n 1)ง

ปัญหาที่ 3. ค้นหาผลรวมของตัวเลขสามหลักบวกทั้งหมดที่หารด้วย 13

สารละลาย. ตัวเลขสามหลักที่เป็นทวีคูณของ 13 ก่อให้เกิดความก้าวหน้าทางคณิตศาสตร์ โดยเทอมแรกคือ 104 และผลต่างคือ 13 ระยะที่ n ของการก้าวหน้านี้มีรูปแบบ:

อัน = 104 + 13(n 1) = 91 + 13n:

มาดูกันว่าความก้าวหน้าของเรามีกี่คำ เมื่อต้องการทำเช่นนี้ เราจะแก้ไขความไม่เท่าเทียมกัน:

6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13 ; 6 69:

ความก้าวหน้าของเรามีสมาชิก 69 คน ใช้สูตร (4) เราค้นหาจำนวนที่ต้องการ:

ส = 2 104 + 68 13 69 = 37674: 2

หลายคนเคยได้ยินเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์ แต่ไม่ใช่ทุกคนที่จะมีความคิดที่ดีว่ามันคืออะไร ในบทความนี้ เราจะให้คำจำกัดความที่เกี่ยวข้อง และพิจารณาคำถามว่าจะค้นหาความแตกต่างของความก้าวหน้าทางคณิตศาสตร์ได้อย่างไร พร้อมยกตัวอย่างจำนวนหนึ่ง

คำจำกัดความทางคณิตศาสตร์

ดังนั้น หากเรากำลังพูดถึงความก้าวหน้าทางคณิตศาสตร์หรือพีชคณิต (แนวคิดเหล่านี้นิยามสิ่งเดียวกัน) นั่นหมายความว่ามีชุดตัวเลขจำนวนหนึ่งที่เป็นไปตามกฎต่อไปนี้: ทุก ๆ สองตัวเลขที่อยู่ติดกันในชุดต่างกันด้วยค่าเดียวกัน ในทางคณิตศาสตร์มันเขียนดังนี้:

ในที่นี้ n หมายถึงจำนวนขององค์ประกอบ a n ในลำดับ และตัวเลข d คือผลต่างของความก้าวหน้า (ชื่อตามมาจากสูตรที่นำเสนอ)

การรู้ความแตกต่าง d หมายถึงอะไร? ว่าตัวเลขข้างเคียง “ไกล” แค่ไหน อย่างไรก็ตาม ความรู้เกี่ยวกับ d ถือเป็นเงื่อนไขที่จำเป็นแต่ไม่เพียงพอในการพิจารณา (ฟื้นฟู) ความก้าวหน้าทั้งหมด จำเป็นต้องรู้ตัวเลขอีกหนึ่งตัวซึ่งอาจเป็นองค์ประกอบใดก็ได้ของอนุกรมที่อยู่ระหว่างการพิจารณา เช่น 4, a10 แต่ตามกฎแล้วจะใช้ตัวเลขแรกนั่นคือ 1

สูตรการกำหนดองค์ประกอบความก้าวหน้า

โดยทั่วไป ข้อมูลข้างต้นเพียงพอที่จะดำเนินการแก้ไขปัญหาเฉพาะได้แล้ว อย่างไรก็ตาม ก่อนที่จะให้ความก้าวหน้าทางคณิตศาสตร์และจำเป็นต้องค้นหาความแตกต่าง เราจะนำเสนอสูตรที่มีประโยชน์สองสามสูตร ซึ่งจะช่วยอำนวยความสะดวกในกระบวนการแก้ไขปัญหาที่ตามมา

เป็นเรื่องง่ายที่จะแสดงให้เห็นว่าองค์ประกอบใดๆ ของลำดับที่มีหมายเลข n สามารถหาได้ดังนี้:

n = 1 + (n - 1) * d

แน่นอนว่าใครๆ ก็สามารถตรวจสอบสูตรนี้ได้ด้วยการค้นหาง่ายๆ: หากคุณแทนที่ n = 1 คุณจะได้องค์ประกอบแรก หากคุณแทนที่ n = 2 นิพจน์จะให้ผลรวมของตัวเลขแรกและผลต่าง ไปเรื่อยๆ

เงื่อนไขของปัญหาต่างๆ ประกอบขึ้นในลักษณะที่ว่า เมื่อพิจารณาคู่ของตัวเลขที่รู้จัก และตัวเลขที่ได้รับในลำดับด้วย จำเป็นต้องสร้างชุดตัวเลขใหม่ทั้งหมด (ค้นหาผลต่างและองค์ประกอบแรก) ตอนนี้เราจะแก้ไขปัญหานี้ในรูปแบบทั่วไป

ดังนั้น ให้ระบุองค์ประกอบสองตัวที่มีตัวเลข n และ m เมื่อใช้สูตรที่ได้รับข้างต้น คุณสามารถสร้างระบบสมการได้สองสมการ:

n = 1 + (n - 1) * d;

ก. = ก. 1 + (ม. - 1) * ง

ในการค้นหาปริมาณที่ไม่ทราบ เราใช้ค่าที่ทราบ เคล็ดลับง่ายๆวิธีแก้ปัญหาของระบบดังกล่าว: ลบด้านซ้ายและด้านขวาเป็นคู่ ความเท่าเทียมกันจะยังคงใช้ได้ เรามี:

n = 1 + (n - 1) * d;

n - a m = (n - 1) * d - (m - 1) * d = d * (n - m)

ดังนั้นเราจึงได้แยกสิ่งที่ไม่รู้จักออกไป (a 1) ตอนนี้เราสามารถเขียนนิพจน์สุดท้ายเพื่อกำหนด d:

d = (a n - a m) / (n - m) โดยที่ n > m

เราได้รับสูตรง่ายๆ: ในการคำนวณความแตกต่าง d ตามเงื่อนไขของปัญหา จำเป็นต้องใช้อัตราส่วนของความแตกต่างระหว่างองค์ประกอบเองกับหมายเลขซีเรียลเท่านั้น ควรให้ความสนใจอย่างหนึ่ง จุดสำคัญข้อควรสนใจ: ความแตกต่างเกิดขึ้นระหว่างสมาชิกที่ "สูงสุด" และ "ต่ำสุด" นั่นคือ n > m ("สูงสุด" หมายถึงสมาชิกที่อยู่ไกลจากจุดเริ่มต้นของลำดับ ค่าสัมบูรณ์ของมันอาจจะมากกว่าหรือน้อยกว่าก็ได้ องค์ประกอบ "จูเนียร์")

นิพจน์สำหรับส่วนต่าง d ความก้าวหน้าควรถูกแทนที่ลงในสมการใดๆ ที่ตอนเริ่มต้นของการแก้ปัญหาเพื่อให้ได้ค่าของเทอมแรก

ในยุคของการพัฒนาเทคโนโลยีคอมพิวเตอร์ของเรา เด็กนักเรียนจำนวนมากพยายามค้นหาวิธีแก้ปัญหาสำหรับการมอบหมายงานของตนบนอินเทอร์เน็ต ดังนั้นจึงมักมีคำถามประเภทนี้เกิดขึ้น: ค้นหาความแตกต่างของความก้าวหน้าทางคณิตศาสตร์ทางออนไลน์ สำหรับคำขอดังกล่าว เครื่องมือค้นหาจะส่งคืนหน้าเว็บจำนวนหนึ่ง โดยไปที่ซึ่งคุณจะต้องป้อนข้อมูลที่ทราบจากเงื่อนไข (ซึ่งอาจเป็นได้สองเงื่อนไขของความก้าวหน้าหรือผลรวมของจำนวนที่แน่นอน ) และได้รับคำตอบทันที อย่างไรก็ตามแนวทางในการแก้ปัญหานี้ไม่เกิดผลในแง่ของการพัฒนาและความเข้าใจของนักเรียนในสาระสำคัญของงานที่ได้รับมอบหมาย

วิธีแก้ปัญหาโดยไม่ต้องใช้สูตร

เรามาแก้ปัญหาแรกโดยไม่ต้องใช้สูตรที่กำหนดเลย ให้องค์ประกอบของอนุกรมได้รับ: a6 = 3, a9 = 18 ค้นหาผลต่างของความก้าวหน้าทางคณิตศาสตร์

องค์ประกอบที่รู้จักจะยืนชิดกันเป็นแถว ต้องบวกส่วนต่าง d เข้ากับค่าที่น้อยที่สุดกี่ครั้งเพื่อให้ได้ค่าที่ใหญ่ที่สุด? สามครั้ง (ครั้งแรกที่เพิ่ม d เราจะได้องค์ประกอบที่ 7 ครั้งที่สอง - ที่แปดในที่สุดครั้งที่สาม - ที่เก้า) ต้องบวกเลขอะไรเป็นสามครั้งจึงจะได้ 18? นี่คือหมายเลขห้า จริงหรือ:

ดังนั้น ผลต่างที่ไม่ทราบ d = 5

แน่นอนว่าการแก้ปัญหาสามารถทำได้โดยใช้สูตรที่เหมาะสม แต่ก็ไม่ได้ตั้งใจ คำอธิบายโดยละเอียดเกี่ยวกับวิธีแก้ไขปัญหาควรมีความชัดเจนและ ตัวอย่างที่สดใสความก้าวหน้าทางคณิตศาสตร์คืออะไร?

งานที่คล้ายกับงานก่อนหน้า

ตอนนี้เรามาแก้ไขปัญหาที่คล้ายกัน แต่เปลี่ยนข้อมูลอินพุต ดังนั้น คุณควรหาว่า a3 = 2, a9 = 19 หรือไม่

แน่นอนว่าคุณสามารถใช้วิธีแก้ไขปัญหาแบบ "เผชิญหน้า" ได้อีกครั้ง แต่เนื่องจากองค์ประกอบของอนุกรมได้รับซึ่งค่อนข้างห่างไกลจากกัน วิธีการนี้จึงไม่สะดวกนัก แต่การใช้สูตรผลลัพธ์จะนำเราไปสู่คำตอบอย่างรวดเร็ว:

d = (ก 9 - ก 3) / (9 - 3) = (19 - 2) / (6) = 17 / 6 กลับไปยัง 2.83

ที่นี่เราได้ปัดเศษหมายเลขสุดท้ายแล้ว ขอบเขตที่การปัดเศษนี้นำไปสู่ข้อผิดพลาดสามารถตัดสินได้โดยการตรวจสอบผลลัพธ์:

9 = 3 + 2.83 + 2.83 + 2.83 + 2.83 + 2.83 + 2.83 = 18.98

ผลลัพธ์นี้แตกต่างเพียง 0.1% จากค่าที่กำหนดในเงื่อนไข ดังนั้นการปัดเศษที่ใช้เป็นร้อยที่ใกล้ที่สุดจึงถือเป็นตัวเลือกที่ประสบความสำเร็จ

ปัญหาเกี่ยวกับการประยุกต์สูตรสำหรับเทอม

ลองพิจารณาตัวอย่างคลาสสิกของปัญหาเพื่อระบุ d ที่ไม่รู้จัก: ค้นหาผลต่างของความก้าวหน้าทางคณิตศาสตร์หาก a1 = 12, a5 = 40

เมื่อระบุลำดับพีชคณิตที่ไม่รู้จักจำนวนสองตัว และหนึ่งในนั้นคือองค์ประกอบ a 1 คุณไม่จำเป็นต้องคิดนาน แต่ควรใช้สูตรสำหรับพจน์ n ทันที ในกรณีนี้เรามี:

5 = 1 + d * (5 - 1) => d = (5 - 1) / 4 = (40 - 12) / 4 = 7

เราได้รับจำนวนที่แน่นอนเมื่อทำการหาร ดังนั้นจึงไม่มีประเด็นในการตรวจสอบความถูกต้องของผลลัพธ์ที่คำนวณได้ดังที่ทำในย่อหน้าก่อนหน้า

มาแก้ปัญหาที่คล้ายกันอีกปัญหาหนึ่ง: เราจำเป็นต้องค้นหาผลต่างของความก้าวหน้าทางคณิตศาสตร์หาก a1 = 16, a8 = 37

เราใช้แนวทางที่คล้ายกับวิธีก่อนหน้าและได้รับ:

8 = 1 + d * (8 - 1) => d = (8 - 1) / 7 = (37 - 16) / 7 = 3

คุณควรรู้อะไรอีกบ้างเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์?

นอกจากปัญหาในการหาความแตกต่างที่ไม่ทราบค่าหรือองค์ประกอบแต่ละส่วนแล้ว ยังมักจำเป็นต้องแก้ปัญหาผลรวมของเทอมแรกของลำดับอีกด้วย การพิจารณางานเหล่านี้อยู่นอกเหนือขอบเขตของบทความอย่างไรก็ตามเพื่อความสมบูรณ์ของข้อมูลที่เรานำเสนอ สูตรทั่วไปสำหรับผลรวมของตัวเลข n ชุด:

∑ n i = 1 (ai) = n * (a 1 + n) / 2


ตัวอย่างเช่น ลำดับ \(2\); \(5\); \(5\); \(8\); \(8\); \(สิบเอ็ด\); \(14\)... เป็นความก้าวหน้าทางคณิตศาสตร์ เนื่องจากแต่ละองค์ประกอบที่ตามมาจะแตกต่างจากองค์ประกอบก่อนหน้าด้วยสาม (สามารถหาได้จากองค์ประกอบก่อนหน้าโดยการบวกสาม):

ในความก้าวหน้านี้ ผลต่าง \(d\) เป็นบวก (เท่ากับ \(3\)) และดังนั้น แต่ละเทอมถัดไปจึงมากกว่าเทอมก่อนหน้า ความก้าวหน้าดังกล่าวเรียกว่า เพิ่มขึ้น.

อย่างไรก็ตาม \(d\) ก็สามารถเป็นได้เช่นกัน จำนวนลบ. ตัวอย่างเช่นในความก้าวหน้าทางคณิตศาสตร์ \(16\); \(10\); \(10\); \(4\); \(4\); \(-2\); \(-2\); \(-8\)... ผลต่างความก้าวหน้า \(d\) เท่ากับลบ 6

และในกรณีนี้ แต่ละองค์ประกอบถัดไปจะมีขนาดเล็กกว่าองค์ประกอบก่อนหน้า ความก้าวหน้าเหล่านี้เรียกว่า ลดลง.

สัญกรณ์ความก้าวหน้าทางคณิตศาสตร์

ความก้าวหน้าจะแสดงด้วยอักษรละตินตัวเล็ก

เรียกว่าตัวเลขที่ก่อให้เกิดความก้าวหน้า สมาชิก(หรือองค์ประกอบ)

พวกเขาแสดงด้วยตัวอักษรเดียวกับความก้าวหน้าทางคณิตศาสตร์ แต่มีดัชนีตัวเลขเท่ากับจำนวนขององค์ประกอบตามลำดับ

ตัวอย่างเช่น ความก้าวหน้าทางคณิตศาสตร์ \(a_n = \left\( 2; 5; 8; 11; 14…\right\)\) ประกอบด้วยองค์ประกอบ \(a_1=2\); \(a_2=5\); \(a_3=8\) และอื่นๆ

กล่าวอีกนัยหนึ่ง สำหรับความก้าวหน้า \(a_n = \left\(2; 5; 8; 11; 14…\right\)\)

การแก้ปัญหาความก้าวหน้าทางคณิตศาสตร์

โดยหลักการแล้ว ข้อมูลที่นำเสนอข้างต้นเพียงพอที่จะแก้ปัญหาความก้าวหน้าทางคณิตศาสตร์ได้เกือบทุกปัญหา (รวมถึงปัญหาที่นำเสนอที่ OGE ด้วย)

ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข \(b_1=7; d=4\) ค้นหา \(b_5\)
สารละลาย:

คำตอบ: \(b_5=23\)

ตัวอย่าง (OGE) เทอมสามแรกของความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดไว้: \(62; 49; 36…\) จงหาค่าของเทอมลบแรกของความก้าวหน้านี้..
สารละลาย:

เราได้รับองค์ประกอบแรกของลำดับและรู้ว่ามันคือความก้าวหน้าทางคณิตศาสตร์ นั่นคือแต่ละองค์ประกอบแตกต่างจากเพื่อนบ้านด้วยจำนวนเดียวกัน มาดูกันว่าอันไหนโดยการลบอันก่อนหน้าออกจากองค์ประกอบถัดไป: \(d=49-62=-13\)

ตอนนี้เราสามารถฟื้นฟูความก้าวหน้าของเราไปสู่องค์ประกอบ (ลบแรก) ที่เราต้องการได้

พร้อม. คุณสามารถเขียนคำตอบได้

คำตอบ: \(-3\)

ตัวอย่าง (OGE) เมื่อพิจารณาองค์ประกอบหลายรายการติดต่อกันของการก้าวหน้าทางคณิตศาสตร์: \(…5; x; 10; 12.5...\) ค้นหาค่าขององค์ประกอบที่กำหนดโดยตัวอักษร \(x\)
สารละลาย:


ในการค้นหา \(x\) เราจำเป็นต้องรู้ว่าองค์ประกอบถัดไปแตกต่างจากองค์ประกอบก่อนหน้ามากเพียงใด กล่าวคือ ความแตกต่างของความก้าวหน้า ลองค้นหาจากองค์ประกอบใกล้เคียงสององค์ประกอบที่รู้จัก: \(d=12.5-10=2.5\)

และตอนนี้เราสามารถค้นหาสิ่งที่ต้องการได้อย่างง่ายดาย: \(x=5+2.5=7.5\)


พร้อม. คุณสามารถเขียนคำตอบได้

คำตอบ: \(7,5\).

ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไขต่อไปนี้: \(a_1=-11\); \(a_(n+1)=a_n+5\) จงหาผลรวมของหกเทอมแรกของความก้าวหน้านี้
สารละลาย:

เราจำเป็นต้องหาผลรวมของหกเทอมแรกของความก้าวหน้า แต่เราไม่รู้ความหมายของมัน เราได้รับเพียงองค์ประกอบแรกเท่านั้น ดังนั้นเราจึงคำนวณค่าทีละรายการก่อนโดยใช้สิ่งที่มอบให้เรา:

\(n=1\); \(a_(1+1)=a_1+5=-11+5=-6\)
\(n=2\); \(n=2\); \(a_(2+1)=a_2+5=-6+5=-1\)
\(n=3\); \(n=3\); \(a_(3+1)=a_3+5=-1+5=4\)
และเมื่อคำนวณองค์ประกอบทั้งหกที่เราต้องการแล้ว เราก็จะพบผลรวมของมัน

\(S_6=a_1+a_2+a_3+a_4+a_5+a_6=\)
\(=(-11)+(-6)+(-1)+4+9+14=9\)

พบจำนวนเงินที่ต้องการแล้ว

คำตอบ: \(S_6=9\).

ตัวอย่าง (OGE) ในการก้าวหน้าทางคณิตศาสตร์ \(a_(12)=23\); \(a_(16)=51\) ค้นหาความแตกต่างของความก้าวหน้านี้
สารละลาย:

คำตอบ: \(ง=7\).

สูตรสำคัญสำหรับความก้าวหน้าทางคณิตศาสตร์

อย่างที่คุณเห็น ปัญหามากมายเกี่ยวกับความก้าวหน้าทางคณิตศาสตร์สามารถแก้ไขได้โดยการทำความเข้าใจสิ่งสำคัญ - ความก้าวหน้าทางคณิตศาสตร์นั้นเป็นสายโซ่ของตัวเลข และแต่ละองค์ประกอบที่ตามมาในสายโซ่นี้ได้มาโดยการเพิ่มหมายเลขเดียวกันเข้ากับองค์ประกอบก่อนหน้า ( ความแตกต่างของความก้าวหน้า)

อย่างไรก็ตาม บางครั้งมีสถานการณ์ที่การตัดสินใจ "เผชิญหน้า" ไม่สะดวกอย่างยิ่ง ตัวอย่างเช่น ลองนึกภาพว่าในตัวอย่างนี้เราต้องค้นหาไม่ใช่องค์ประกอบที่ห้า \(b_5\) แต่เป็นองค์ประกอบที่สามร้อยแปดสิบหก \(b_(386)\) เราควรเพิ่ม \(385\) สี่ครั้งหรือไม่? หรือจินตนาการว่าในตัวอย่างสุดท้าย คุณต้องหาผลรวมขององค์ประกอบเจ็ดสิบสามตัวแรก คุณจะเหนื่อยกับการนับ...

ดังนั้นในกรณีเช่นนี้ พวกเขาไม่ได้แก้ปัญหาแบบ "เผชิญหน้า" แต่ใช้สูตรพิเศษที่ได้มาจากความก้าวหน้าทางคณิตศาสตร์ และหลักๆ คือสูตรสำหรับเทอมที่ n ของการก้าวหน้าและสูตรสำหรับผลรวมของ \(n\) เทอมแรก

สูตรของ \(n\) เทอมที่ 3: \(a_n=a_1+(n-1)d\) โดยที่ \(a_1\) คือเทอมแรกของความก้าวหน้า
\(n\) – จำนวนขององค์ประกอบที่ต้องการ;
\(a_n\) – เทอมของความก้าวหน้าที่มีหมายเลข \(n\)


สูตรนี้ช่วยให้เราค้นหาองค์ประกอบที่สามร้อยหรือล้านได้อย่างรวดเร็ว โดยรู้เฉพาะองค์ประกอบแรกและส่วนต่างของความก้าวหน้า

ตัวอย่าง. ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข: \(b_1=-159\); \(ง=8.2\) ค้นหา \(b_(246)\)
สารละลาย:

คำตอบ: \(b_(246)=1850\)

สูตรสำหรับผลรวมของ n เทอมแรก: \(S_n=\frac(a_1+a_n)(2) \cdot n\) โดยที่



\(a_n\) – คำสรุปสุดท้าย;


ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข \(a_n=3.4n-0.6\) หาผลรวมของพจน์ \(25\) แรกของความก้าวหน้านี้
สารละลาย:

\(S_(25)=\)\(\frac(a_1+a_(25))(2 )\) \(\cdot 25\)

ในการคำนวณผลรวมของเทอมยี่สิบห้าแรก เราจำเป็นต้องทราบค่าของเทอมแรกและยี่สิบห้า
ความก้าวหน้าของเราได้มาจากสูตรของเทอมที่ n ขึ้นอยู่กับจำนวน (ดูรายละเอียดเพิ่มเติมดู) ลองคำนวณองค์ประกอบแรกด้วยการแทนที่องค์ประกอบหนึ่งด้วย \(n\)

\(n=1;\) \(a_1=3.4·1-0.6=2.8\)

ทีนี้ ลองหาเทอมที่ยี่สิบห้าโดยการแทนที่ยี่สิบห้าแทน \(n\)

\(n=25;\) \(a_(25)=3.4·25-0.6=84.4\)

ตอนนี้เราสามารถคำนวณจำนวนเงินที่ต้องการได้อย่างง่ายดาย

\(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \(\cdot 25=\)
\(=\) \(\frac(2.8+84.4)(2)\) \(\cdot 25 =\)\(1090\)

คำตอบพร้อมแล้ว

คำตอบ: \(S_(25)=1,090\)

สำหรับผลรวม \(n\) ของเทอมแรก คุณสามารถได้สูตรอื่น: คุณเพียงแค่ต้อง \(S_(25)=\)\(\frac(a_1+a_(25))(2)\) \ (\cdot 25\ ) แทน \(a_n\) แทนที่สูตรของมัน \(a_n=a_1+(n-1)d\) เราได้รับ:

สูตรสำหรับผลรวมของ n พจน์แรก: \(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\) โดยที่

\(S_n\) – ผลรวมที่ต้องการของ \(n\) องค์ประกอบแรก
\(a_1\) – เทอมแรกที่สรุป;
\(d\) – ความต่างของความก้าวหน้า;
\(n\) – จำนวนองค์ประกอบทั้งหมด

ตัวอย่าง. ค้นหาผลรวมของพจน์ \(33\)-ex แรกของความก้าวหน้าทางคณิตศาสตร์: \(17\); \(15.5\); \(15.5\); \(14\)…
สารละลาย:

คำตอบ: \(S_(33)=-231\)

ปัญหาความก้าวหน้าทางคณิตศาสตร์ที่ซับซ้อนมากขึ้น

ตอนนี้คุณมีทุกอย่างแล้ว ข้อมูลที่จำเป็นสำหรับการแก้ปัญหาความก้าวหน้าทางคณิตศาสตร์เกือบทุกปัญหา มาจบหัวข้อโดยคำนึงถึงปัญหาที่คุณไม่เพียงแต่ต้องใช้สูตรเท่านั้น แต่ยังต้องคิดอีกนิดหน่อย (ในวิชาคณิตศาสตร์สิ่งนี้มีประโยชน์ ☺)

ตัวอย่าง (OGE) หาผลรวมของพจน์ที่เป็นลบของการก้าวหน้า: \(-19.3\); \(-19\); \(-19\); \(-18.7\)…
สารละลาย:

\(S_n=\)\(\frac(2a_1+(n-1)d)(2)\) \(\cdot n\)

งานนี้คล้ายกับงานก่อนหน้ามาก เราเริ่มที่จะแก้สิ่งเดียวกัน: ก่อนอื่นเราหา \(d\)

\(d=a_2-a_1=-19-(-19.3)=0.3\)

ตอนนี้ฉันต้องการแทนที่ \(d\) ลงในสูตรของผลรวม... และมีความแตกต่างเล็กๆ น้อยๆ เกิดขึ้น - เราไม่รู้ \(n\) กล่าวอีกนัยหนึ่ง เราไม่รู้ว่าจะต้องเพิ่มคำศัพท์จำนวนเท่าใด จะทราบได้อย่างไร? ลองคิดดู เราจะหยุดเพิ่มองค์ประกอบเมื่อเราไปถึงองค์ประกอบบวกแรก นั่นคือคุณต้องค้นหาจำนวนองค์ประกอบนี้ ยังไง? มาเขียนสูตรสำหรับคำนวณองค์ประกอบใดๆ ของความก้าวหน้าทางคณิตศาสตร์: \(a_n=a_1+(n-1)d\) สำหรับกรณีของเรา

\(a_n=a_1+(n-1)d\)

\(a_n=-19.3+(n-1)·0.3\)

เราต้องการให้ \(a_n\) มีค่ามากกว่าศูนย์ เรามาดูกันว่า \(n\) สิ่งนี้จะเกิดอะไรขึ้น

\(-19.3+(n-1)·0.3>0\)

\((n-1)·0.3>19.3\) \(|:0.3\)

เราหารอสมการทั้งสองด้านด้วย \(0.3\)

\(n-1>\)\(\frac(19.3)(0.3)\)

เราโอนลบหนึ่งไม่ลืมเปลี่ยนป้าย

\(n>\)\(\frac(19.3)(0.3)\) \(+1\)

มาคำนวณกัน...

\(n>65,333…\)

...และปรากฎว่าองค์ประกอบบวกตัวแรกจะมีตัวเลข \(66\) ดังนั้น ค่าลบสุดท้ายจึงมี \(n=65\) ในกรณีนี้ลองตรวจสอบสิ่งนี้กัน

\(n=65;\) \(a_(65)=-19.3+(65-1)·0.3=-0.1\)
\(n=66;\) \(a_(66)=-19.3+(66-1)·0.3=0.2\)

ดังนั้นเราจึงต้องเพิ่มองค์ประกอบแรก \(65\)

\(S_(65)=\) \(\frac(2 \cdot (-19.3)+(65-1)0.3)(2)\)\(\cdot 65\)
\(S_(65)=\)\((-38.6+19.2)(2)\)\(\cdot 65=-630.5\)

คำตอบพร้อมแล้ว

คำตอบ: \(S_(65)=-630.5\)

ตัวอย่าง (OGE) ความก้าวหน้าทางคณิตศาสตร์ถูกกำหนดโดยเงื่อนไข: \(a_1=-33\); \(a_(n+1)=a_n+4\) ค้นหาผลรวมจากองค์ประกอบ \(26\)th ถึง \(42\)
สารละลาย:

\(a_1=-33;\) \(a_(n+1)=a_n+4\)

ในปัญหานี้ คุณต้องค้นหาผลรวมขององค์ประกอบด้วย แต่ไม่ได้เริ่มจากองค์ประกอบแรก แต่เริ่มจาก \(26\)th สำหรับกรณีเช่นนี้เราไม่มีสูตร จะตัดสินใจอย่างไร?
ง่ายมาก - หากต้องการหาผลรวมจาก \(26\)th ถึง \(42\)th คุณต้องหาผลรวมจาก \(1\)th ถึง \(42\)th ก่อน แล้วจึงลบออก จากนั้นผลรวมตั้งแต่แรกถึง \(25\)th (ดูรูป)


สำหรับความก้าวหน้าของเรา \(a_1=-33\) และความแตกต่าง \(d=4\) (ท้ายที่สุดแล้ว เราเพิ่มสี่องค์ประกอบก่อนหน้าเพื่อค้นหาองค์ประกอบถัดไป) เมื่อรู้เช่นนี้ เราจะหาผลรวมขององค์ประกอบ \(42\)-y ตัวแรกได้

\(S_(42)=\) \(\frac(2 \cdot (-33)+(42-1)4)(2)\)\(\cdot 42=\)
\(=\)\(\frac(-66+164)(2)\) \(\cdot 42=2058\)

ตอนนี้ผลรวมขององค์ประกอบแรก \(25\)

\(S_(25)=\) \(\frac(2 \cdot (-33)+(25-1)4)(2)\)\(\cdot 25=\)
\(=\)\(\frac(-66+96)(2)\) \(\cdot 25=375\)

และสุดท้าย เราก็คำนวณคำตอบ

\(S=S_(42)-S_(25)=2058-375=1683\)

คำตอบ: \(ส=1683\).

สำหรับการก้าวหน้าทางคณิตศาสตร์ มีสูตรอีกหลายสูตรที่เราไม่ได้พิจารณาในบทความนี้ เนื่องจากมีประโยชน์ในทางปฏิบัติต่ำ อย่างไรก็ตาม คุณสามารถค้นหาได้อย่างง่ายดาย