Πώς να βρείτε το ελάχιστο κοινό πολλαπλάσιο δύο αριθμών. Μέθοδοι εύρεσης του ελάχιστου κοινού πολλαπλάσιου, nok - αυτό, και όλες οι εξηγήσεις

Ο μεγαλύτερος κοινός διαιρέτης

Ορισμός 2

Εάν ένας φυσικός αριθμός a διαιρείται με έναν φυσικό αριθμό $b$, τότε ο $b$ ονομάζεται διαιρέτης του $a$ και ο $a$ ονομάζεται πολλαπλάσιο του $b$.

Έστω $a$ και $b$ φυσικοί αριθμοί. Ο αριθμός $c$ ονομάζεται κοινός διαιρέτηςτόσο για $a$ όσο και για $b$.

Το σύνολο των κοινών διαιρετών των αριθμών $a$ και $b$ είναι πεπερασμένο, αφού κανένας από αυτούς τους διαιρέτες δεν μπορεί να είναι μεγαλύτερος από $a$. Αυτό σημαίνει ότι μεταξύ αυτών των διαιρετών υπάρχει ένας μεγαλύτερος, ο οποίος ονομάζεται ο μεγαλύτερος κοινός διαιρέτης των αριθμών $a$ και $b$ και συμβολίζεται με τους ακόλουθους συμβολισμούς:

$GCD\(a;b)\ ή \D\(a;b)$

Για να βρείτε τον μεγαλύτερο κοινό διαιρέτη δύο αριθμών χρειάζεστε:

  1. Βρείτε το γινόμενο των αριθμών που βρέθηκαν στο βήμα 2. Ο αριθμός που προκύπτει θα είναι ο επιθυμητός μεγαλύτερος κοινός διαιρέτης.

Παράδειγμα 1

Βρείτε το gcd των αριθμών $121$ και $132.$

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Επιλέξτε τους αριθμούς που περιλαμβάνονται στην επέκταση αυτών των αριθμών

    $242=2\cdot 11\cdot 11$

    $132=2\cdot 2\cdot 3\cdot 11$

    Βρείτε το γινόμενο των αριθμών που βρέθηκαν στο βήμα 2. Ο αριθμός που προκύπτει θα είναι ο επιθυμητός μεγαλύτερος κοινός διαιρέτης.

    $GCD=2\cdot 11=22$

Παράδειγμα 2

Βρείτε το gcd των μονώνυμων $63$ και $81$.

Θα βρούμε σύμφωνα με τον αλγόριθμο που παρουσιάζεται. Για να το κάνετε αυτό:

    Ας συνυπολογίσουμε τους αριθμούς σε πρώτους παράγοντες

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Επιλέγουμε τους αριθμούς που περιλαμβάνονται στην επέκταση αυτών των αριθμών

    $63=3\cdot 3\cdot 7$

    $81=3\cdot 3\cdot 3\cdot 3$

    Ας βρούμε το γινόμενο των αριθμών που βρέθηκαν στο βήμα 2. Ο αριθμός που προκύπτει θα είναι ο επιθυμητός μεγαλύτερος κοινός διαιρέτης.

    $GCD=3\cdot 3=9$

Μπορείτε να βρείτε το gcd δύο αριθμών με άλλο τρόπο, χρησιμοποιώντας ένα σύνολο διαιρετών αριθμών.

Παράδειγμα 3

Βρείτε το gcd των αριθμών $48$ και $60$.

Διάλυμα:

Ας βρούμε το σύνολο των διαιρετών του αριθμού $48$: $\left\((\rm 1,2,3.4.6,8,12,16,24,48)\right\)$

Τώρα ας βρούμε το σύνολο των διαιρετών του αριθμού $60$:$\ \left\((\rm 1,2,3,4,5,6,10,12,15,20,30,60)\right\) $

Ας βρούμε την τομή αυτών των συνόλων: $\left\((\rm 1,2,3,4,6,12)\right\)$ - αυτό το σύνολο θα καθορίσει το σύνολο των κοινών διαιρετών των αριθμών $48$ και $60 $. Το μεγαλύτερο στοιχείο σε αυτό το σύνολο θα είναι ο αριθμός $12$. Αυτό σημαίνει ότι ο μεγαλύτερος κοινός διαιρέτης των αριθμών $48$ και $60$ είναι $12$.

Ορισμός του NPL

Ορισμός 3

Κοινά πολλαπλάσια φυσικών αριθμώνΤο $a$ και το $b$ είναι ένας φυσικός αριθμός που είναι πολλαπλάσιο του $a$ και του $b$.

Τα κοινά πολλαπλάσια αριθμών είναι αριθμοί που διαιρούνται με τους αρχικούς αριθμούς χωρίς υπόλοιπο. Για παράδειγμα, για τους αριθμούς $25$ και $50$, τα κοινά πολλαπλάσια θα είναι οι αριθμοί $50.100.150.200$ κ.λπ.

Το μικρότερο κοινό πολλαπλάσιο θα ονομάζεται το λιγότερο κοινό πολλαπλάσιο και θα συμβολίζεται με LCM$(a;b)$ ή K$(a;b).$

Για να βρείτε το LCM δύο αριθμών, πρέπει:

  1. Αριθμοί παραγόντων σε πρώτους παράγοντες
  2. Γράψτε τους παράγοντες που αποτελούν μέρος του πρώτου αριθμού και προσθέστε σε αυτούς τους παράγοντες που αποτελούν μέρος του δεύτερου και δεν είναι μέρος του πρώτου

Παράδειγμα 4

Βρείτε το LCM των αριθμών $99$ και $77$.

Θα βρούμε σύμφωνα με τον αλγόριθμο που παρουσιάζεται. Για αυτό

    Αριθμοί παραγόντων σε πρώτους παράγοντες

    $99=3\cdot 3\cdot 11$

    Καταγράψτε τους παράγοντες που περιλαμβάνονται στο πρώτο

    προσθέστε σε αυτά πολλαπλασιαστές που αποτελούν μέρος του δεύτερου και όχι μέρος του πρώτου

    Βρείτε το γινόμενο των αριθμών που βρέθηκαν στο βήμα 2. Ο αριθμός που προκύπτει θα είναι το επιθυμητό ελάχιστο κοινό πολλαπλάσιο

    $NOK=3\cdot 3\cdot 11\cdot 7=693$

    Η σύνταξη λιστών διαιρετών αριθμών είναι συχνά μια εργασία που απαιτεί πολύ κόπο. Υπάρχει ένας τρόπος για να βρείτε το GCD που ονομάζεται Ευκλείδειος αλγόριθμος.

    Δηλώσεις στις οποίες βασίζεται ο ευκλείδειος αλγόριθμος:

    Αν οι $a$ και $b$ είναι φυσικοί αριθμοί και οι $a\vdots b$, τότε $D(a;b)=b$

    Αν οι $a$ και $b$ είναι φυσικοί αριθμοί τέτοιοι ώστε το $b

Χρησιμοποιώντας $D(a;b)= D(a-b;b)$, μπορούμε να μειώσουμε διαδοχικά τους αριθμούς που εξετάζουμε μέχρι να φτάσουμε σε ένα ζεύγος αριθμών έτσι ώστε ο ένας από αυτούς να διαιρείται με τον άλλο. Τότε ο μικρότερος από αυτούς τους αριθμούς θα είναι ο επιθυμητός μεγαλύτερος κοινός διαιρέτης για τους αριθμούς $a$ και $b$.

Ιδιότητες GCD και LCM

  1. Οποιοδήποτε κοινό πολλαπλάσιο των $a$ και $b$ διαιρείται με το K$(a;b)$
  2. Αν $a\vdots b$ , τότε К$(a;b)=a$
  3. Αν K$(a;b)=k$ και $m$ είναι φυσικός αριθμός, τότε K$(am;bm)=km$

    Εάν ο $d$ είναι ένας κοινός διαιρέτης για $a$ και $b$, τότε K($\frac(a)(d);\frac(b)(d)$)=$\ \frac(k)(d ) $

    Αν $a\vdots c$ και $b\vdots c$ , τότε το $\frac(ab)(c)$ είναι το κοινό πολλαπλάσιο των $a$ και $b$

    Για οποιουσδήποτε φυσικούς αριθμούς $a$ και $b$ ισχύει η ισότητα

    $D(a;b)\cdot К(a;b)=ab$

    Οποιοσδήποτε κοινός διαιρέτης των αριθμών $a$ και $b$ είναι διαιρέτης του αριθμού $D(a;b)$

Σταυρός πολλαπλασιασμός

Μέθοδος Κοινού Διαιρέτη

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Για να εκτιμήσετε πόση διαφορά κάνει η λιγότερο κοινή πολλαπλή μέθοδος, δοκιμάστε να υπολογίσετε αυτά τα ίδια παραδείγματα χρησιμοποιώντας τη διασταυρούμενη μέθοδο.

Κοινός παρονομαστής των κλασμάτων

Φυσικά, χωρίς αριθμομηχανή. Νομίζω ότι μετά από αυτό τα σχόλια θα είναι περιττά.

Δείτε επίσης:

Αρχικά ήθελα να συμπεριλάβω μεθόδους cast κοινός παρονομαστήςστην ενότητα «Προσθήκη και αφαίρεση κλασμάτων». Αλλά αποδείχτηκε ότι υπήρχαν τόσες πολλές πληροφορίες και η σημασία τους είναι τόσο μεγάλη (εξάλλου, όχι μόνο τα αριθμητικά κλάσματα έχουν κοινούς παρονομαστές), που είναι καλύτερο να μελετήσουμε αυτό το θέμα ξεχωριστά.

Ας υποθέσουμε λοιπόν ότι έχουμε δύο κλάσματα με διαφορετικούς παρονομαστές. Και θέλουμε να διασφαλίσουμε ότι οι παρονομαστές θα γίνουν οι ίδιοι. Η βασική ιδιότητα ενός κλάσματος έρχεται στη διάσωση, η οποία, να σας υπενθυμίσω, ακούγεται ως εξής:

Ένα κλάσμα δεν θα αλλάξει αν ο αριθμητής και ο παρονομαστής του πολλαπλασιαστούν με τον ίδιο αριθμό εκτός από το μηδέν.

Έτσι, εάν επιλέξετε σωστά τους παράγοντες, οι παρονομαστές των κλασμάτων θα γίνουν ίσοι - αυτή η διαδικασία ονομάζεται. Και καλούνται οι απαιτούμενοι αριθμοί, «εξαφανίζοντας» τους παρονομαστές.

Γιατί πρέπει να ανάγουμε τα κλάσματα σε κοινό παρονομαστή; Εδώ είναι μόνο μερικοί λόγοι:

  1. Πρόσθεση και αφαίρεση κλασμάτων με διαφορετικούς παρονομαστές. Δεν υπάρχει άλλος τρόπος να πραγματοποιηθεί αυτή η λειτουργία.
  2. Σύγκριση κλασμάτων. Μερικές φορές η αναγωγή σε έναν κοινό παρονομαστή απλοποιεί πολύ αυτό το έργο.
  3. Επίλυση προβλημάτων που αφορούν κλάσματα και ποσοστά. Τα ποσοστά είναι ουσιαστικά συνηθισμένες εκφράσεις που περιέχουν κλάσματα.

Υπάρχουν πολλοί τρόποι για να βρείτε αριθμούς που, όταν πολλαπλασιαστούν με αυτούς, θα κάνουν τους παρονομαστές των κλασμάτων ίσους. Θα εξετάσουμε μόνο τρία από αυτά - με σειρά αυξανόμενης πολυπλοκότητας και, κατά μία έννοια, αποτελεσματικότητας.

Σταυρός πολλαπλασιασμός

Το πιο απλό και αξιόπιστο τρόπο, το οποίο εγγυάται την εξίσωση των παρονομαστών. Θα ενεργήσουμε «με τρόπο ακραίο»: πολλαπλασιάζουμε το πρώτο κλάσμα με τον παρονομαστή του δεύτερου κλάσματος και το δεύτερο με τον παρονομαστή του πρώτου. Ως αποτέλεσμα, οι παρονομαστές και των δύο κλασμάτων θα γίνουν ίσοι με το γινόμενο των αρχικών παρονομαστών. Ρίχνω μιά ματιά:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Ως πρόσθετους παράγοντες, λάβετε υπόψη τους παρονομαστές των γειτονικών κλασμάτων. Παίρνουμε:

Ναι, είναι τόσο απλό. Εάν μόλις αρχίζετε να μελετάτε τα κλάσματα, είναι καλύτερο να εργαστείτε χρησιμοποιώντας αυτήν τη μέθοδο - με αυτόν τον τρόπο θα ασφαλιστείτε από πολλά λάθη και θα έχετε εγγυημένα το αποτέλεσμα.

Το μόνο μειονέκτημα αυτή τη μέθοδο- πρέπει να μετρήσετε πολύ, επειδή οι παρονομαστές πολλαπλασιάζονται "σε όλη τη διάρκεια" και το αποτέλεσμα μπορεί να είναι πολύ μεγάλα νούμερα. Αυτό είναι το τίμημα που πρέπει να πληρώσετε για την αξιοπιστία.

Μέθοδος Κοινού Διαιρέτη

Αυτή η τεχνική βοηθά στη σημαντική μείωση των υπολογισμών, αλλά, δυστυχώς, χρησιμοποιείται αρκετά σπάνια. Η μέθοδος είναι η εξής:

  1. Πριν προχωρήσετε ευθεία (δηλαδή, χρησιμοποιώντας τη μέθοδο σταυρωτής), ρίξτε μια ματιά στους παρονομαστές. Ίσως το ένα από αυτά (αυτό που είναι μεγαλύτερο) χωρίζεται στο άλλο.
  2. Ο αριθμός που προκύπτει από αυτή τη διαίρεση θα είναι ένας πρόσθετος παράγοντας για το κλάσμα με μικρότερο παρονομαστή.
  3. Σε αυτήν την περίπτωση, ένα κλάσμα με μεγάλο παρονομαστή δεν χρειάζεται να πολλαπλασιαστεί με τίποτα - εδώ βρίσκεται η εξοικονόμηση. Ταυτόχρονα, η πιθανότητα λάθους μειώνεται απότομα.

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 84: 21 = 4; 72: 12 = 6. Επειδή και στις δύο περιπτώσεις ο ένας παρονομαστής διαιρείται χωρίς υπόλοιπο με τον άλλο, χρησιμοποιούμε τη μέθοδο των κοινών παραγόντων. Έχουμε:

Σημειώστε ότι το δεύτερο κλάσμα δεν πολλαπλασιάστηκε με τίποτα απολύτως. Στην πραγματικότητα, μειώσαμε το ποσό του υπολογισμού στο μισό!

Παρεμπιπτόντως, δεν πήρα τα κλάσματα σε αυτό το παράδειγμα τυχαία. Αν σας ενδιαφέρει, δοκιμάστε να τα μετρήσετε χρησιμοποιώντας τη σταυρωτή μέθοδο. Μετά τη μείωση, οι απαντήσεις θα είναι οι ίδιες, αλλά θα υπάρχει πολύ περισσότερη δουλειά.

Αυτή είναι η ισχύς της μεθόδου των κοινών διαιρετών, αλλά, και πάλι, μπορεί να χρησιμοποιηθεί μόνο όταν ένας από τους παρονομαστές διαιρεθεί με τον άλλο χωρίς υπόλοιπο. Κάτι που συμβαίνει αρκετά σπάνια.

Ελάχιστη κοινή πολλαπλή μέθοδος

Όταν ανάγουμε κλάσματα σε κοινό παρονομαστή, ουσιαστικά προσπαθούμε να βρούμε έναν αριθμό που να διαιρείται με κάθε παρονομαστή. Στη συνέχεια φέρνουμε τους παρονομαστές και των δύο κλασμάτων σε αυτόν τον αριθμό.

Υπάρχουν πολλοί τέτοιοι αριθμοί και ο μικρότερος από αυτούς δεν θα είναι απαραιτήτως ίσος με το άμεσο γινόμενο των παρονομαστών των αρχικών κλασμάτων, όπως υποτίθεται στη μέθοδο «διασταυρούμενη».

Για παράδειγμα, για τους παρονομαστές 8 και 12, ο αριθμός 24 είναι αρκετά κατάλληλος, αφού 24: 8 = 3. 24: 12 = 2. Αυτός ο αριθμός είναι πολύ μικρότερος από το γινόμενο 8 12 = 96.

Ο μικρότερος αριθμός που διαιρείται με κάθε έναν από τους παρονομαστές ονομάζεται τους (LCM).

Σημείωση: Το ελάχιστο κοινό πολλαπλάσιο των a και b συμβολίζεται με LCM(a; b). Για παράδειγμα, LCM(16, 24) = 48; LCM(8; 12) = 24.

Εάν καταφέρετε να βρείτε έναν τέτοιο αριθμό, το συνολικό ποσό των υπολογισμών θα είναι ελάχιστο. Δείτε τα παραδείγματα:

Πώς να βρείτε τον χαμηλότερο κοινό παρονομαστή

Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 234 = 117 2; 351 = 117 · 3. Οι συντελεστές 2 και 3 είναι συμπρώτοι (δεν έχουν κοινούς παράγοντες εκτός από το 1), και ο παράγοντας 117 είναι κοινός. Επομένως LCM(234, 351) = 117 2 3 = 702.

Ομοίως, 15 = 5 3; 20 = 5 · 4. Οι παράγοντες 3 και 4 είναι συμπρωτάρηδες και ο παράγοντας 5 είναι κοινός. Επομένως LCM(15, 20) = 5 3 4 = 60.

Τώρα ας φέρουμε τα κλάσματα σε κοινούς παρονομαστές:

Παρατηρήστε πόσο χρήσιμο ήταν να παραγοντοποιήσετε τους αρχικούς παρονομαστές:

  1. Έχοντας ανακαλύψει πανομοιότυπους παράγοντες, φτάσαμε αμέσως στο ελάχιστο κοινό πολλαπλάσιο, το οποίο, σε γενικές γραμμές, είναι ένα μη τετριμμένο πρόβλημα.
  2. Από την επέκταση που προκύπτει μπορείτε να μάθετε ποιοι παράγοντες "λείπουν" σε κάθε κλάσμα. Για παράδειγμα, 234 · 3 = 702, επομένως, για το πρώτο κλάσμα ο πρόσθετος παράγοντας είναι 3.

Μην νομίζετε ότι δεν θα υπάρχουν τόσο σύνθετα κλάσματα στα πραγματικά παραδείγματα. Συναντιούνται συνεχώς, και οι παραπάνω εργασίες δεν είναι το όριο!

Το μόνο πρόβλημα είναι πώς να βρείτε αυτό ακριβώς το NOC. Μερικές φορές τα πάντα μπορούν να βρεθούν μέσα σε λίγα δευτερόλεπτα, κυριολεκτικά "με το μάτι", αλλά γενικά αυτό είναι ένα πολύπλοκο υπολογιστικό έργο που απαιτεί ξεχωριστή εξέταση. Δεν θα το θίξουμε εδώ.

Δείτε επίσης:

Αναγωγή κλασμάτων σε κοινό παρονομαστή

Αρχικά ήθελα να συμπεριλάβω τεχνικές κοινού παρονομαστή στην ενότητα Προσθήκη και αφαίρεση κλασμάτων. Αλλά αποδείχθηκε ότι υπήρχαν τόσες πολλές πληροφορίες και η σημασία τους είναι τόσο μεγάλη (εξάλλου, όχι μόνο τα αριθμητικά κλάσματα έχουν κοινούς παρονομαστές), που είναι καλύτερο να μελετήσουμε αυτό το θέμα ξεχωριστά.

Ας υποθέσουμε λοιπόν ότι έχουμε δύο κλάσματα με διαφορετικούς παρονομαστές. Και θέλουμε να διασφαλίσουμε ότι οι παρονομαστές θα γίνουν οι ίδιοι. Η βασική ιδιότητα ενός κλάσματος έρχεται στη διάσωση, η οποία, να σας υπενθυμίσω, ακούγεται ως εξής:

Ένα κλάσμα δεν θα αλλάξει αν ο αριθμητής και ο παρονομαστής του πολλαπλασιαστούν με τον ίδιο αριθμό εκτός από το μηδέν.

Έτσι, εάν επιλέξετε σωστά τους παράγοντες, οι παρονομαστές των κλασμάτων θα γίνουν ίσοι - αυτή η διαδικασία ονομάζεται. Και καλούνται οι απαιτούμενοι αριθμοί, «εξαφανίζοντας» τους παρονομαστές.

Γιατί πρέπει να ανάγουμε τα κλάσματα σε κοινό παρονομαστή;

Κοινός παρονομαστής, έννοια και ορισμός.

Εδώ είναι μόνο μερικοί λόγοι:

  1. Πρόσθεση και αφαίρεση κλασμάτων με διαφορετικούς παρονομαστές. Δεν υπάρχει άλλος τρόπος να πραγματοποιηθεί αυτή η λειτουργία.
  2. Σύγκριση κλασμάτων. Μερικές φορές η αναγωγή σε έναν κοινό παρονομαστή απλοποιεί πολύ αυτό το έργο.
  3. Επίλυση προβλημάτων που αφορούν κλάσματα και ποσοστά. Τα ποσοστά είναι ουσιαστικά συνηθισμένες εκφράσεις που περιέχουν κλάσματα.

Υπάρχουν πολλοί τρόποι για να βρείτε αριθμούς που, όταν πολλαπλασιαστούν με αυτούς, θα κάνουν τους παρονομαστές των κλασμάτων ίσους. Θα εξετάσουμε μόνο τρία από αυτά - με σειρά αυξανόμενης πολυπλοκότητας και, κατά μία έννοια, αποτελεσματικότητας.

Σταυρός πολλαπλασιασμός

Η απλούστερη και πιο αξιόπιστη μέθοδος, η οποία εγγυάται την εξίσωση των παρονομαστών. Θα ενεργήσουμε «με τρόπο ακραίο»: πολλαπλασιάζουμε το πρώτο κλάσμα με τον παρονομαστή του δεύτερου κλάσματος και το δεύτερο με τον παρονομαστή του πρώτου. Ως αποτέλεσμα, οι παρονομαστές και των δύο κλασμάτων θα γίνουν ίσοι με το γινόμενο των αρχικών παρονομαστών. Ρίχνω μιά ματιά:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Ως πρόσθετους παράγοντες, λάβετε υπόψη τους παρονομαστές των γειτονικών κλασμάτων. Παίρνουμε:

Ναι, είναι τόσο απλό. Εάν μόλις αρχίζετε να μελετάτε τα κλάσματα, είναι καλύτερο να εργαστείτε χρησιμοποιώντας αυτήν τη μέθοδο - με αυτόν τον τρόπο θα ασφαλιστείτε από πολλά λάθη και θα έχετε εγγυημένα το αποτέλεσμα.

Το μόνο μειονέκτημα αυτής της μεθόδου είναι ότι πρέπει να μετράτε πολύ, επειδή οι παρονομαστές πολλαπλασιάζονται "σε όλη τη διαδρομή" και το αποτέλεσμα μπορεί να είναι πολύ μεγάλοι αριθμοί. Αυτό είναι το τίμημα που πρέπει να πληρώσετε για την αξιοπιστία.

Μέθοδος Κοινού Διαιρέτη

Αυτή η τεχνική βοηθά στη σημαντική μείωση των υπολογισμών, αλλά, δυστυχώς, χρησιμοποιείται αρκετά σπάνια. Η μέθοδος είναι η εξής:

  1. Πριν προχωρήσετε ευθεία (δηλαδή, χρησιμοποιώντας τη μέθοδο σταυρωτής), ρίξτε μια ματιά στους παρονομαστές. Ίσως το ένα από αυτά (αυτό που είναι μεγαλύτερο) χωρίζεται στο άλλο.
  2. Ο αριθμός που προκύπτει από αυτή τη διαίρεση θα είναι ένας πρόσθετος παράγοντας για το κλάσμα με μικρότερο παρονομαστή.
  3. Σε αυτήν την περίπτωση, ένα κλάσμα με μεγάλο παρονομαστή δεν χρειάζεται να πολλαπλασιαστεί με τίποτα - εδώ βρίσκεται η εξοικονόμηση. Ταυτόχρονα, η πιθανότητα λάθους μειώνεται απότομα.

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 84: 21 = 4; 72: 12 = 6. Επειδή και στις δύο περιπτώσεις ο ένας παρονομαστής διαιρείται χωρίς υπόλοιπο με τον άλλο, χρησιμοποιούμε τη μέθοδο των κοινών παραγόντων. Έχουμε:

Σημειώστε ότι το δεύτερο κλάσμα δεν πολλαπλασιάστηκε με τίποτα απολύτως. Στην πραγματικότητα, μειώσαμε το ποσό του υπολογισμού στο μισό!

Παρεμπιπτόντως, δεν πήρα τα κλάσματα σε αυτό το παράδειγμα τυχαία. Αν σας ενδιαφέρει, δοκιμάστε να τα μετρήσετε χρησιμοποιώντας τη σταυρωτή μέθοδο. Μετά τη μείωση, οι απαντήσεις θα είναι οι ίδιες, αλλά θα υπάρχει πολύ περισσότερη δουλειά.

Αυτή είναι η ισχύς της μεθόδου των κοινών διαιρετών, αλλά, και πάλι, μπορεί να χρησιμοποιηθεί μόνο όταν ένας από τους παρονομαστές διαιρεθεί με τον άλλο χωρίς υπόλοιπο. Κάτι που συμβαίνει αρκετά σπάνια.

Ελάχιστη κοινή πολλαπλή μέθοδος

Όταν ανάγουμε κλάσματα σε κοινό παρονομαστή, ουσιαστικά προσπαθούμε να βρούμε έναν αριθμό που να διαιρείται με κάθε παρονομαστή. Στη συνέχεια φέρνουμε τους παρονομαστές και των δύο κλασμάτων σε αυτόν τον αριθμό.

Υπάρχουν πολλοί τέτοιοι αριθμοί και ο μικρότερος από αυτούς δεν θα είναι απαραιτήτως ίσος με το άμεσο γινόμενο των παρονομαστών των αρχικών κλασμάτων, όπως υποτίθεται στη μέθοδο «διασταυρούμενη».

Για παράδειγμα, για τους παρονομαστές 8 και 12, ο αριθμός 24 είναι αρκετά κατάλληλος, αφού 24: 8 = 3. 24: 12 = 2. Αυτός ο αριθμός είναι πολύ μικρότερος από το γινόμενο 8 12 = 96.

Ο μικρότερος αριθμός που διαιρείται με κάθε έναν από τους παρονομαστές ονομάζεται τους (LCM).

Σημείωση: Το ελάχιστο κοινό πολλαπλάσιο των a και b συμβολίζεται με LCM(a; b). Για παράδειγμα, LCM(16, 24) = 48; LCM(8; 12) = 24.

Εάν καταφέρετε να βρείτε έναν τέτοιο αριθμό, το συνολικό ποσό των υπολογισμών θα είναι ελάχιστο. Δείτε τα παραδείγματα:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 234 = 117 2; 351 = 117 · 3. Οι συντελεστές 2 και 3 είναι συμπρώτοι (δεν έχουν κοινούς παράγοντες εκτός από το 1), και ο παράγοντας 117 είναι κοινός. Επομένως LCM(234, 351) = 117 2 3 = 702.

Ομοίως, 15 = 5 3; 20 = 5 · 4. Οι παράγοντες 3 και 4 είναι συμπρωτάρηδες και ο παράγοντας 5 είναι κοινός. Επομένως LCM(15, 20) = 5 3 4 = 60.

Τώρα ας φέρουμε τα κλάσματα σε κοινούς παρονομαστές:

Παρατηρήστε πόσο χρήσιμο ήταν να παραγοντοποιήσετε τους αρχικούς παρονομαστές:

  1. Έχοντας ανακαλύψει πανομοιότυπους παράγοντες, φτάσαμε αμέσως στο ελάχιστο κοινό πολλαπλάσιο, το οποίο, σε γενικές γραμμές, είναι ένα μη τετριμμένο πρόβλημα.
  2. Από την επέκταση που προκύπτει μπορείτε να μάθετε ποιοι παράγοντες "λείπουν" σε κάθε κλάσμα. Για παράδειγμα, 234 · 3 = 702, επομένως, για το πρώτο κλάσμα ο πρόσθετος παράγοντας είναι 3.

Για να εκτιμήσετε πόση διαφορά κάνει η λιγότερο κοινή πολλαπλή μέθοδος, δοκιμάστε να υπολογίσετε αυτά τα ίδια παραδείγματα χρησιμοποιώντας τη διασταυρούμενη μέθοδο. Φυσικά, χωρίς αριθμομηχανή. Νομίζω ότι μετά από αυτό τα σχόλια θα είναι περιττά.

Μην νομίζετε ότι δεν θα υπάρχουν τόσο σύνθετα κλάσματα στα πραγματικά παραδείγματα. Συναντιούνται συνεχώς, και οι παραπάνω εργασίες δεν είναι το όριο!

Το μόνο πρόβλημα είναι πώς να βρείτε αυτό ακριβώς το NOC. Μερικές φορές τα πάντα μπορούν να βρεθούν μέσα σε λίγα δευτερόλεπτα, κυριολεκτικά "με το μάτι", αλλά γενικά αυτό είναι ένα πολύπλοκο υπολογιστικό έργο που απαιτεί ξεχωριστή εξέταση. Δεν θα το θίξουμε εδώ.

Δείτε επίσης:

Αναγωγή κλασμάτων σε κοινό παρονομαστή

Αρχικά ήθελα να συμπεριλάβω τεχνικές κοινού παρονομαστή στην ενότητα Προσθήκη και αφαίρεση κλασμάτων. Αλλά αποδείχθηκε ότι υπήρχαν τόσες πολλές πληροφορίες και η σημασία τους είναι τόσο μεγάλη (εξάλλου, όχι μόνο τα αριθμητικά κλάσματα έχουν κοινούς παρονομαστές), που είναι καλύτερο να μελετήσουμε αυτό το θέμα ξεχωριστά.

Ας υποθέσουμε λοιπόν ότι έχουμε δύο κλάσματα με διαφορετικούς παρονομαστές. Και θέλουμε να διασφαλίσουμε ότι οι παρονομαστές θα γίνουν οι ίδιοι. Η βασική ιδιότητα ενός κλάσματος έρχεται στη διάσωση, η οποία, να σας υπενθυμίσω, ακούγεται ως εξής:

Ένα κλάσμα δεν θα αλλάξει αν ο αριθμητής και ο παρονομαστής του πολλαπλασιαστούν με τον ίδιο αριθμό εκτός από το μηδέν.

Έτσι, εάν επιλέξετε σωστά τους παράγοντες, οι παρονομαστές των κλασμάτων θα γίνουν ίσοι - αυτή η διαδικασία ονομάζεται. Και καλούνται οι απαιτούμενοι αριθμοί, «εξαφανίζοντας» τους παρονομαστές.

Γιατί πρέπει να ανάγουμε τα κλάσματα σε κοινό παρονομαστή; Εδώ είναι μόνο μερικοί λόγοι:

  1. Πρόσθεση και αφαίρεση κλασμάτων με διαφορετικούς παρονομαστές. Δεν υπάρχει άλλος τρόπος να πραγματοποιηθεί αυτή η λειτουργία.
  2. Σύγκριση κλασμάτων. Μερικές φορές η αναγωγή σε έναν κοινό παρονομαστή απλοποιεί πολύ αυτό το έργο.
  3. Επίλυση προβλημάτων που αφορούν κλάσματα και ποσοστά. Τα ποσοστά είναι ουσιαστικά συνηθισμένες εκφράσεις που περιέχουν κλάσματα.

Υπάρχουν πολλοί τρόποι για να βρείτε αριθμούς που, όταν πολλαπλασιαστούν με αυτούς, θα κάνουν τους παρονομαστές των κλασμάτων ίσους. Θα εξετάσουμε μόνο τρία από αυτά - με σειρά αυξανόμενης πολυπλοκότητας και, κατά μία έννοια, αποτελεσματικότητας.

Σταυρός πολλαπλασιασμός

Η απλούστερη και πιο αξιόπιστη μέθοδος, η οποία εγγυάται την εξίσωση των παρονομαστών. Θα ενεργήσουμε «με τρόπο ακραίο»: πολλαπλασιάζουμε το πρώτο κλάσμα με τον παρονομαστή του δεύτερου κλάσματος και το δεύτερο με τον παρονομαστή του πρώτου. Ως αποτέλεσμα, οι παρονομαστές και των δύο κλασμάτων θα γίνουν ίσοι με το γινόμενο των αρχικών παρονομαστών.

Ρίχνω μιά ματιά:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Ως πρόσθετους παράγοντες, λάβετε υπόψη τους παρονομαστές των γειτονικών κλασμάτων. Παίρνουμε:

Ναι, είναι τόσο απλό. Εάν μόλις αρχίζετε να μελετάτε τα κλάσματα, είναι καλύτερο να εργαστείτε χρησιμοποιώντας αυτήν τη μέθοδο - με αυτόν τον τρόπο θα ασφαλιστείτε από πολλά λάθη και θα έχετε εγγυημένα το αποτέλεσμα.

Το μόνο μειονέκτημα αυτής της μεθόδου είναι ότι πρέπει να μετράτε πολύ, επειδή οι παρονομαστές πολλαπλασιάζονται "σε όλη τη διαδρομή" και το αποτέλεσμα μπορεί να είναι πολύ μεγάλοι αριθμοί. Αυτό είναι το τίμημα που πρέπει να πληρώσετε για την αξιοπιστία.

Μέθοδος Κοινού Διαιρέτη

Αυτή η τεχνική βοηθά στη σημαντική μείωση των υπολογισμών, αλλά, δυστυχώς, χρησιμοποιείται αρκετά σπάνια. Η μέθοδος είναι η εξής:

  1. Πριν προχωρήσετε ευθεία (δηλαδή, χρησιμοποιώντας τη μέθοδο σταυρωτής), ρίξτε μια ματιά στους παρονομαστές. Ίσως το ένα από αυτά (αυτό που είναι μεγαλύτερο) χωρίζεται στο άλλο.
  2. Ο αριθμός που προκύπτει από αυτή τη διαίρεση θα είναι ένας πρόσθετος παράγοντας για το κλάσμα με μικρότερο παρονομαστή.
  3. Σε αυτήν την περίπτωση, ένα κλάσμα με μεγάλο παρονομαστή δεν χρειάζεται να πολλαπλασιαστεί με τίποτα - εδώ βρίσκεται η εξοικονόμηση. Ταυτόχρονα, η πιθανότητα λάθους μειώνεται απότομα.

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 84: 21 = 4; 72: 12 = 6. Επειδή και στις δύο περιπτώσεις ο ένας παρονομαστής διαιρείται χωρίς υπόλοιπο με τον άλλο, χρησιμοποιούμε τη μέθοδο των κοινών παραγόντων. Έχουμε:

Σημειώστε ότι το δεύτερο κλάσμα δεν πολλαπλασιάστηκε με τίποτα απολύτως. Στην πραγματικότητα, μειώσαμε το ποσό του υπολογισμού στο μισό!

Παρεμπιπτόντως, δεν πήρα τα κλάσματα σε αυτό το παράδειγμα τυχαία. Αν σας ενδιαφέρει, δοκιμάστε να τα μετρήσετε χρησιμοποιώντας τη σταυρωτή μέθοδο. Μετά τη μείωση, οι απαντήσεις θα είναι οι ίδιες, αλλά θα υπάρχει πολύ περισσότερη δουλειά.

Αυτή είναι η ισχύς της μεθόδου των κοινών διαιρετών, αλλά, και πάλι, μπορεί να χρησιμοποιηθεί μόνο όταν ένας από τους παρονομαστές διαιρεθεί με τον άλλο χωρίς υπόλοιπο. Κάτι που συμβαίνει αρκετά σπάνια.

Ελάχιστη κοινή πολλαπλή μέθοδος

Όταν ανάγουμε κλάσματα σε κοινό παρονομαστή, ουσιαστικά προσπαθούμε να βρούμε έναν αριθμό που να διαιρείται με κάθε παρονομαστή. Στη συνέχεια φέρνουμε τους παρονομαστές και των δύο κλασμάτων σε αυτόν τον αριθμό.

Υπάρχουν πολλοί τέτοιοι αριθμοί και ο μικρότερος από αυτούς δεν θα είναι απαραιτήτως ίσος με το άμεσο γινόμενο των παρονομαστών των αρχικών κλασμάτων, όπως υποτίθεται στη μέθοδο «διασταυρούμενη».

Για παράδειγμα, για τους παρονομαστές 8 και 12, ο αριθμός 24 είναι αρκετά κατάλληλος, αφού 24: 8 = 3. 24: 12 = 2. Αυτός ο αριθμός είναι πολύ μικρότερος από το γινόμενο 8 12 = 96.

Ο μικρότερος αριθμός που διαιρείται με κάθε έναν από τους παρονομαστές ονομάζεται τους (LCM).

Σημείωση: Το ελάχιστο κοινό πολλαπλάσιο των a και b συμβολίζεται με LCM(a; b). Για παράδειγμα, LCM(16, 24) = 48; LCM(8; 12) = 24.

Εάν καταφέρετε να βρείτε έναν τέτοιο αριθμό, το συνολικό ποσό των υπολογισμών θα είναι ελάχιστο. Δείτε τα παραδείγματα:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 234 = 117 2; 351 = 117 · 3. Οι συντελεστές 2 και 3 είναι συμπρώτοι (δεν έχουν κοινούς παράγοντες εκτός από το 1), και ο παράγοντας 117 είναι κοινός. Επομένως LCM(234, 351) = 117 2 3 = 702.

Ομοίως, 15 = 5 3; 20 = 5 · 4. Οι παράγοντες 3 και 4 είναι συμπρωτάρηδες και ο παράγοντας 5 είναι κοινός. Επομένως LCM(15, 20) = 5 3 4 = 60.

Τώρα ας φέρουμε τα κλάσματα σε κοινούς παρονομαστές:

Παρατηρήστε πόσο χρήσιμο ήταν να παραγοντοποιήσετε τους αρχικούς παρονομαστές:

  1. Έχοντας ανακαλύψει πανομοιότυπους παράγοντες, φτάσαμε αμέσως στο ελάχιστο κοινό πολλαπλάσιο, το οποίο, σε γενικές γραμμές, είναι ένα μη τετριμμένο πρόβλημα.
  2. Από την επέκταση που προκύπτει μπορείτε να μάθετε ποιοι παράγοντες "λείπουν" σε κάθε κλάσμα. Για παράδειγμα, 234 · 3 = 702, επομένως, για το πρώτο κλάσμα ο πρόσθετος παράγοντας είναι 3.

Για να εκτιμήσετε πόση διαφορά κάνει η λιγότερο κοινή πολλαπλή μέθοδος, δοκιμάστε να υπολογίσετε αυτά τα ίδια παραδείγματα χρησιμοποιώντας τη διασταυρούμενη μέθοδο. Φυσικά, χωρίς αριθμομηχανή. Νομίζω ότι μετά από αυτό τα σχόλια θα είναι περιττά.

Μην νομίζετε ότι δεν θα υπάρχουν τόσο σύνθετα κλάσματα στα πραγματικά παραδείγματα. Συναντιούνται συνεχώς, και οι παραπάνω εργασίες δεν είναι το όριο!

Το μόνο πρόβλημα είναι πώς να βρείτε αυτό ακριβώς το NOC. Μερικές φορές τα πάντα μπορούν να βρεθούν μέσα σε λίγα δευτερόλεπτα, κυριολεκτικά "με το μάτι", αλλά γενικά αυτό είναι ένα πολύπλοκο υπολογιστικό έργο που απαιτεί ξεχωριστή εξέταση. Δεν θα το θίξουμε εδώ.

Δείτε επίσης:

Αναγωγή κλασμάτων σε κοινό παρονομαστή

Αρχικά ήθελα να συμπεριλάβω τεχνικές κοινού παρονομαστή στην ενότητα Προσθήκη και αφαίρεση κλασμάτων. Αλλά αποδείχθηκε ότι υπήρχαν τόσες πολλές πληροφορίες και η σημασία τους είναι τόσο μεγάλη (εξάλλου, όχι μόνο τα αριθμητικά κλάσματα έχουν κοινούς παρονομαστές), που είναι καλύτερο να μελετήσουμε αυτό το θέμα ξεχωριστά.

Ας υποθέσουμε λοιπόν ότι έχουμε δύο κλάσματα με διαφορετικούς παρονομαστές. Και θέλουμε να διασφαλίσουμε ότι οι παρονομαστές θα γίνουν οι ίδιοι. Η βασική ιδιότητα ενός κλάσματος έρχεται στη διάσωση, η οποία, να σας υπενθυμίσω, ακούγεται ως εξής:

Ένα κλάσμα δεν θα αλλάξει αν ο αριθμητής και ο παρονομαστής του πολλαπλασιαστούν με τον ίδιο αριθμό εκτός από το μηδέν.

Έτσι, εάν επιλέξετε σωστά τους παράγοντες, οι παρονομαστές των κλασμάτων θα γίνουν ίσοι - αυτή η διαδικασία ονομάζεται. Και καλούνται οι απαιτούμενοι αριθμοί, «εξαφανίζοντας» τους παρονομαστές.

Γιατί πρέπει να ανάγουμε τα κλάσματα σε κοινό παρονομαστή; Εδώ είναι μόνο μερικοί λόγοι:

  1. Πρόσθεση και αφαίρεση κλασμάτων με διαφορετικούς παρονομαστές. Δεν υπάρχει άλλος τρόπος να πραγματοποιηθεί αυτή η λειτουργία.
  2. Σύγκριση κλασμάτων. Μερικές φορές η αναγωγή σε έναν κοινό παρονομαστή απλοποιεί πολύ αυτό το έργο.
  3. Επίλυση προβλημάτων που αφορούν κλάσματα και ποσοστά. Τα ποσοστά είναι ουσιαστικά συνηθισμένες εκφράσεις που περιέχουν κλάσματα.

Υπάρχουν πολλοί τρόποι για να βρείτε αριθμούς που, όταν πολλαπλασιαστούν με αυτούς, θα κάνουν τους παρονομαστές των κλασμάτων ίσους. Θα εξετάσουμε μόνο τρία από αυτά - με σειρά αυξανόμενης πολυπλοκότητας και, κατά μία έννοια, αποτελεσματικότητας.

Σταυρός πολλαπλασιασμός

Η απλούστερη και πιο αξιόπιστη μέθοδος, η οποία εγγυάται την εξίσωση των παρονομαστών. Θα ενεργήσουμε «με τρόπο ακραίο»: πολλαπλασιάζουμε το πρώτο κλάσμα με τον παρονομαστή του δεύτερου κλάσματος και το δεύτερο με τον παρονομαστή του πρώτου. Ως αποτέλεσμα, οι παρονομαστές και των δύο κλασμάτων θα γίνουν ίσοι με το γινόμενο των αρχικών παρονομαστών. Ρίχνω μιά ματιά:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Ως πρόσθετους παράγοντες, λάβετε υπόψη τους παρονομαστές των γειτονικών κλασμάτων. Παίρνουμε:

Ναι, είναι τόσο απλό. Εάν μόλις αρχίζετε να μελετάτε τα κλάσματα, είναι καλύτερο να εργαστείτε χρησιμοποιώντας αυτήν τη μέθοδο - με αυτόν τον τρόπο θα ασφαλιστείτε από πολλά λάθη και θα έχετε εγγυημένα το αποτέλεσμα.

Το μόνο μειονέκτημα αυτής της μεθόδου είναι ότι πρέπει να μετράτε πολύ, επειδή οι παρονομαστές πολλαπλασιάζονται "σε όλη τη διαδρομή" και το αποτέλεσμα μπορεί να είναι πολύ μεγάλοι αριθμοί.

Αναγωγή κλασμάτων σε κοινό παρονομαστή

Αυτό είναι το τίμημα που πρέπει να πληρώσετε για την αξιοπιστία.

Μέθοδος Κοινού Διαιρέτη

Αυτή η τεχνική βοηθά στη σημαντική μείωση των υπολογισμών, αλλά, δυστυχώς, χρησιμοποιείται αρκετά σπάνια. Η μέθοδος είναι η εξής:

  1. Πριν προχωρήσετε ευθεία (δηλαδή, χρησιμοποιώντας τη μέθοδο σταυρωτής), ρίξτε μια ματιά στους παρονομαστές. Ίσως το ένα από αυτά (αυτό που είναι μεγαλύτερο) χωρίζεται στο άλλο.
  2. Ο αριθμός που προκύπτει από αυτή τη διαίρεση θα είναι ένας πρόσθετος παράγοντας για το κλάσμα με μικρότερο παρονομαστή.
  3. Σε αυτήν την περίπτωση, ένα κλάσμα με μεγάλο παρονομαστή δεν χρειάζεται να πολλαπλασιαστεί με τίποτα - εδώ βρίσκεται η εξοικονόμηση. Ταυτόχρονα, η πιθανότητα λάθους μειώνεται απότομα.

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 84: 21 = 4; 72: 12 = 6. Επειδή και στις δύο περιπτώσεις ο ένας παρονομαστής διαιρείται χωρίς υπόλοιπο με τον άλλο, χρησιμοποιούμε τη μέθοδο των κοινών παραγόντων. Έχουμε:

Σημειώστε ότι το δεύτερο κλάσμα δεν πολλαπλασιάστηκε με τίποτα απολύτως. Στην πραγματικότητα, μειώσαμε το ποσό του υπολογισμού στο μισό!

Παρεμπιπτόντως, δεν πήρα τα κλάσματα σε αυτό το παράδειγμα τυχαία. Αν σας ενδιαφέρει, δοκιμάστε να τα μετρήσετε χρησιμοποιώντας τη σταυρωτή μέθοδο. Μετά τη μείωση, οι απαντήσεις θα είναι οι ίδιες, αλλά θα υπάρχει πολύ περισσότερη δουλειά.

Αυτή είναι η ισχύς της μεθόδου των κοινών διαιρετών, αλλά, και πάλι, μπορεί να χρησιμοποιηθεί μόνο όταν ένας από τους παρονομαστές διαιρεθεί με τον άλλο χωρίς υπόλοιπο. Κάτι που συμβαίνει αρκετά σπάνια.

Ελάχιστη κοινή πολλαπλή μέθοδος

Όταν ανάγουμε κλάσματα σε κοινό παρονομαστή, ουσιαστικά προσπαθούμε να βρούμε έναν αριθμό που να διαιρείται με κάθε παρονομαστή. Στη συνέχεια φέρνουμε τους παρονομαστές και των δύο κλασμάτων σε αυτόν τον αριθμό.

Υπάρχουν πολλοί τέτοιοι αριθμοί και ο μικρότερος από αυτούς δεν θα είναι απαραιτήτως ίσος με το άμεσο γινόμενο των παρονομαστών των αρχικών κλασμάτων, όπως υποτίθεται στη μέθοδο «διασταυρούμενη».

Για παράδειγμα, για τους παρονομαστές 8 και 12, ο αριθμός 24 είναι αρκετά κατάλληλος, αφού 24: 8 = 3. 24: 12 = 2. Αυτός ο αριθμός είναι πολύ μικρότερος από το γινόμενο 8 12 = 96.

Ο μικρότερος αριθμός που διαιρείται με κάθε έναν από τους παρονομαστές ονομάζεται τους (LCM).

Σημείωση: Το ελάχιστο κοινό πολλαπλάσιο των a και b συμβολίζεται με LCM(a; b). Για παράδειγμα, LCM(16, 24) = 48; LCM(8; 12) = 24.

Εάν καταφέρετε να βρείτε έναν τέτοιο αριθμό, το συνολικό ποσό των υπολογισμών θα είναι ελάχιστο. Δείτε τα παραδείγματα:

Εργο. Βρείτε τις έννοιες των εκφράσεων:

Σημειώστε ότι 234 = 117 2; 351 = 117 · 3. Οι συντελεστές 2 και 3 είναι συμπρώτοι (δεν έχουν κοινούς παράγοντες εκτός από το 1), και ο παράγοντας 117 είναι κοινός. Επομένως LCM(234, 351) = 117 2 3 = 702.

Ομοίως, 15 = 5 3; 20 = 5 · 4. Οι παράγοντες 3 και 4 είναι συμπρωτάρηδες και ο παράγοντας 5 είναι κοινός. Επομένως LCM(15, 20) = 5 3 4 = 60.

Τώρα ας φέρουμε τα κλάσματα σε κοινούς παρονομαστές:

Παρατηρήστε πόσο χρήσιμο ήταν να παραγοντοποιήσετε τους αρχικούς παρονομαστές:

  1. Έχοντας ανακαλύψει πανομοιότυπους παράγοντες, φτάσαμε αμέσως στο ελάχιστο κοινό πολλαπλάσιο, το οποίο, σε γενικές γραμμές, είναι ένα μη τετριμμένο πρόβλημα.
  2. Από την επέκταση που προκύπτει μπορείτε να μάθετε ποιοι παράγοντες "λείπουν" σε κάθε κλάσμα. Για παράδειγμα, 234 · 3 = 702, επομένως, για το πρώτο κλάσμα ο πρόσθετος παράγοντας είναι 3.

Για να εκτιμήσετε πόση διαφορά κάνει η λιγότερο κοινή πολλαπλή μέθοδος, δοκιμάστε να υπολογίσετε αυτά τα ίδια παραδείγματα χρησιμοποιώντας τη διασταυρούμενη μέθοδο. Φυσικά, χωρίς αριθμομηχανή. Νομίζω ότι μετά από αυτό τα σχόλια θα είναι περιττά.

Μην νομίζετε ότι δεν θα υπάρχουν τόσο σύνθετα κλάσματα στα πραγματικά παραδείγματα. Συναντιούνται συνεχώς, και οι παραπάνω εργασίες δεν είναι το όριο!

Το μόνο πρόβλημα είναι πώς να βρείτε αυτό ακριβώς το NOC. Μερικές φορές τα πάντα μπορούν να βρεθούν μέσα σε λίγα δευτερόλεπτα, κυριολεκτικά "με το μάτι", αλλά γενικά αυτό είναι ένα πολύπλοκο υπολογιστικό έργο που απαιτεί ξεχωριστή εξέταση. Δεν θα το θίξουμε εδώ.

Όταν προσθέτουμε και αφαιρούμε αλγεβρικά κλάσματα με διαφορετικούς παρονομαστές, τα κλάσματα οδηγούν πρώτα σε κοινός παρονομαστής. Αυτό σημαίνει ότι βρίσκουν έναν παρονομαστή που διαιρείται με τον αρχικό παρονομαστή κάθε αλγεβρικού κλάσματος που περιλαμβάνεται στη δεδομένη έκφραση.

Όπως γνωρίζετε, εάν ο αριθμητής και ο παρονομαστής ενός κλάσματος πολλαπλασιαστούν (ή διαιρεθούν) με τον ίδιο αριθμό εκτός από το μηδέν, η τιμή του κλάσματος δεν θα αλλάξει. Αυτή είναι η κύρια ιδιότητα ενός κλάσματος. Επομένως, όταν τα κλάσματα ανάγονται σε κοινό παρονομαστή, ουσιαστικά πολλαπλασιάζουν τον αρχικό παρονομαστή κάθε κλάσματος με τον παράγοντα που λείπει για να ληφθεί ένας κοινός παρονομαστής. Σε αυτήν την περίπτωση, πρέπει να πολλαπλασιάσετε τον αριθμητή του κλάσματος με αυτόν τον παράγοντα (είναι διαφορετικός για κάθε κλάσμα).

Για παράδειγμα, δίνεται το ακόλουθο άθροισμα αλγεβρικών κλασμάτων:

Απαιτείται η απλοποίηση της έκφρασης, δηλαδή η προσθήκη δύο αλγεβρικών κλασμάτων. Για να γίνει αυτό, πρώτα απ 'όλα, πρέπει να φέρετε τους όρους του κλάσματος σε έναν κοινό παρονομαστή. Το πρώτο βήμα είναι να βρείτε ένα μονώνυμο που να διαιρείται με το 3x και το 2y. Σε αυτήν την περίπτωση, είναι επιθυμητό να είναι το μικρότερο, δηλαδή να βρεθεί το ελάχιστο κοινό πολλαπλάσιο (LCM) για 3x και 2y.

Για αριθμητικούς συντελεστές και μεταβλητές, το LCM αναζητείται χωριστά. LCM(3, 2) = 6, και LCM(x, y) = xy. Στη συνέχεια, οι τιμές που βρέθηκαν πολλαπλασιάζονται: 6xy.

Τώρα πρέπει να προσδιορίσουμε με ποιον παράγοντα πρέπει να πολλαπλασιάσουμε 3x για να πάρουμε 6xy:
6xy ÷ 3x = 2y

Αυτό σημαίνει ότι όταν ανάγεται το πρώτο αλγεβρικό κλάσμα σε κοινό παρονομαστή, ο αριθμητής του πρέπει να πολλαπλασιαστεί επί 2y (ο παρονομαστής έχει ήδη πολλαπλασιαστεί όταν ανάγεται σε κοινό παρονομαστή). Ο πολλαπλασιαστής για τον αριθμητή του δεύτερου κλάσματος αναζητείται με τον ίδιο τρόπο. Θα είναι ίσο με 3x.

Έτσι παίρνουμε:

Τότε μπορείτε να ενεργήσετε όπως με τα κλάσματα με ίδιοι παρονομαστές: προστίθενται οι αριθμητές και γράφεται ένας κοινός παρονομαστής:

Μετά από μετασχηματισμούς, προκύπτει μια απλοποιημένη έκφραση, η οποία είναι μία αλγεβρικό κλάσμα, που είναι το άθροισμα δύο αρχικών:

Τα αλγεβρικά κλάσματα στην αρχική έκφραση μπορεί να περιέχουν παρονομαστές που είναι πολυώνυμα και όχι μονώνυμα (όπως στο παραπάνω παράδειγμα). Σε αυτήν την περίπτωση, πριν αναζητήσετε έναν κοινό παρονομαστή, θα πρέπει να συνυπολογίσετε τους παρονομαστές (αν είναι δυνατόν). Στη συνέχεια, ο κοινός παρονομαστής συλλέγεται από διαφορετικούς παράγοντες. Εάν ο πολλαπλασιαστής είναι σε πολλούς αρχικούς παρονομαστές, τότε λαμβάνεται μία φορά. Εάν ο πολλαπλασιαστής έχει διαφορετικές δυνάμεις στους αρχικούς παρονομαστές, τότε λαμβάνεται με τον μεγαλύτερο. Για παράδειγμα:

Εδώ το πολυώνυμο a 2 – b 2 μπορεί να παρασταθεί ως γινόμενο (a – b)(a + b). Ο παράγοντας 2a – 2b διευρύνεται ως 2(a – b). Έτσι, ο κοινός παρονομαστής θα είναι 2(a – b)(a + b).

Για να αναγάγετε τα κλάσματα στον χαμηλότερο κοινό παρονομαστή, πρέπει: 1) να βρείτε το ελάχιστο κοινό πολλαπλάσιο των παρονομαστών των δοσμένων κλασμάτων, θα είναι ο χαμηλότερος κοινός παρονομαστής. 2) βρείτε έναν πρόσθετο παράγοντα για κάθε κλάσμα, γιατί διαιρέστε νέος παρονομαστήςστον παρονομαστή κάθε κλάσματος. 3) πολλαπλασιάστε τον αριθμητή και τον παρονομαστή κάθε κλάσματος με τον πρόσθετο παράγοντα του.

Παραδείγματα. Να μειώσετε τα παρακάτω κλάσματα στον χαμηλότερο κοινό παρονομαστή τους.

Βρίσκουμε το ελάχιστο κοινό πολλαπλάσιο των παρονομαστών: LCM(5; 4) = 20, αφού το 20 είναι ο μικρότερος αριθμός που διαιρείται και με το 5 και με το 4. Βρείτε για το 1ο κλάσμα έναν επιπλέον παράγοντα 4 (20 : 5=4). Για το 2ο κλάσμα ο πρόσθετος παράγοντας είναι 5 (20 : 4=5). Πολλαπλασιάζουμε τον αριθμητή και τον παρονομαστή του 1ου κλάσματος με το 4 και τον αριθμητή και τον παρονομαστή του 2ου κλάσματος με το 5. Μειώσαμε αυτά τα κλάσματα στον χαμηλότερο κοινό παρονομαστή ( 20 ).

Ο χαμηλότερος κοινός παρονομαστής αυτών των κλασμάτων είναι ο αριθμός 8, αφού το 8 διαιρείται με το 4 και τον εαυτό του. Δεν θα υπάρχει πρόσθετος παράγοντας για το 1ο κλάσμα (ή μπορούμε να πούμε ότι είναι ίσος με ένα), για το 2ο κλάσμα ο πρόσθετος παράγοντας είναι 2 (8 : 4=2). Πολλαπλασιάζουμε τον αριθμητή και τον παρονομαστή του 2ου κλάσματος επί 2. Μειώσαμε αυτά τα κλάσματα στον χαμηλότερο κοινό παρονομαστή ( 8 ).

Αυτά τα κλάσματα δεν είναι μη αναγώγιμα.

Ας μειώσουμε το 1ο κλάσμα κατά 4 και ας μειώσουμε το 2ο κλάσμα κατά 2. ( δείτε παραδείγματα για τη μείωση των συνηθισμένων κλασμάτων: Χάρτης ιστότοπου → 5.4.2. Παραδείγματα αναγωγής κοινών κλασμάτων). Βρείτε το LOC(16 ; 20)=2 4 · 5=16· 5=80. Ο πρόσθετος πολλαπλασιαστής για το 1ο κλάσμα είναι 5 (80 : 16=5). Ο πρόσθετος παράγοντας για το 2ο κλάσμα είναι 4 (80 : 20=4). Πολλαπλασιάζουμε τον αριθμητή και τον παρονομαστή του 1ου κλάσματος με το 5 και τον αριθμητή και τον παρονομαστή του 2ου κλάσματος με το 4. Μειώσαμε αυτά τα κλάσματα στον χαμηλότερο κοινό παρονομαστή ( 80 ).

Βρίσκουμε τον χαμηλότερο κοινό παρονομαστή NCD(5 ; 6 και 15)=NOK(5 ; 6 και 15)=30. Ο πρόσθετος παράγοντας στο 1ο κλάσμα είναι 6 (30 : 5=6), ο πρόσθετος παράγοντας στο 2ο κλάσμα είναι 5 (30 : 6=5), ο πρόσθετος παράγοντας στο 3ο κλάσμα είναι 2 (30 : 15=2). Πολλαπλασιάζουμε τον αριθμητή και τον παρονομαστή του 1ου κλάσματος με το 6, τον αριθμητή και τον παρονομαστή του 2ου κλάσματος με το 5, τον αριθμητή και τον παρονομαστή του 3ου κλάσματος με το 2. Μειώσαμε αυτά τα κλάσματα στον χαμηλότερο κοινό παρονομαστή ( 30 ).

Σελίδα 1 από 1 1


Αυτό το άρθρο εξηγεί πώς να βρείτε τον χαμηλότερο κοινό παρονομαστήΚαι πώς να ανάγουμε κλάσματα σε κοινό παρονομαστή. Αρχικά, δίνονται οι ορισμοί του κοινού παρονομαστή των κλασμάτων και του ελάχιστου κοινού παρονομαστή και παρουσιάζεται ο τρόπος εύρεσης του κοινού παρονομαστή των κλασμάτων. Ακολουθεί ένας κανόνας για τη μείωση των κλασμάτων σε έναν κοινό παρονομαστή και εξετάζονται παραδείγματα εφαρμογής αυτού του κανόνα. Συμπερασματικά, συζητούνται παραδείγματα φέροντας τρία ή περισσότερα κλάσματα σε έναν κοινό παρονομαστή.

Πλοήγηση στη σελίδα.

Τι ονομάζεται αναγωγή κλασμάτων σε κοινό παρονομαστή;

Τώρα μπορούμε να πούμε τι σημαίνει αναγωγή κλασμάτων σε κοινό παρονομαστή. Αναγωγή κλασμάτων σε κοινό παρονομαστή- Αυτός είναι ο πολλαπλασιασμός των αριθμητών και των παρονομαστών των δοσμένων κλασμάτων με τέτοιους πρόσθετους παράγοντες που το αποτέλεσμα είναι κλάσματα με τους ίδιους παρονομαστές.

Κοινός παρονομαστής, ορισμός, παραδείγματα

Τώρα ήρθε η ώρα να ορίσουμε τον κοινό παρονομαστή των κλασμάτων.

Με άλλα λόγια, ο κοινός παρονομαστής ενός συγκεκριμένου συνόλου συνηθισμένων κλασμάτων είναι κάθε φυσικός αριθμός που διαιρείται με όλους τους παρονομαστές αυτών των κλασμάτων.

Από τον δηλωμένο ορισμό προκύπτει ότι ένα δεδομένο σύνολο κλασμάτων έχει άπειρους κοινούς παρονομαστές, αφού υπάρχει άπειρος αριθμός κοινών πολλαπλασίων όλων των παρονομαστών του αρχικού συνόλου κλασμάτων.

Ο προσδιορισμός του κοινού παρονομαστή των κλασμάτων σάς επιτρέπει να βρείτε τους κοινούς παρονομαστές δεδομένων κλασμάτων. Έστω, για παράδειγμα, με τα κλάσματα 1/4 και 5/6, οι παρονομαστές τους είναι 4 και 6, αντίστοιχα. Θετικά κοινά πολλαπλάσια των αριθμών 4 και 6 είναι οι αριθμοί 12, 24, 36, 48, ... Οποιοσδήποτε από αυτούς τους αριθμούς είναι κοινός παρονομαστής των κλασμάτων 1/4 και 5/6.

Για να ενοποιήσετε το υλικό, εξετάστε τη λύση στο ακόλουθο παράδειγμα.

Παράδειγμα.

Μπορούν τα κλάσματα 2/3, 23/6 και 7/12 να αναχθούν σε κοινό παρονομαστή 150;

Διάλυμα.

Για να απαντήσουμε στην ερώτηση πρέπει να βρούμε αν ο αριθμός 150 είναι κοινό πολλαπλάσιο των παρονομαστών 3, 6 και 12. Για να το κάνουμε αυτό, ας ελέγξουμε αν το 150 διαιρείται με καθέναν από αυτούς τους αριθμούς (αν χρειάζεται, δείτε τους κανόνες και τα παραδείγματα διαίρεσης φυσικών αριθμών, καθώς και τους κανόνες και παραδείγματα διαίρεσης φυσικών αριθμών με υπόλοιπο): 150:3=50 , 150:6=25, 150: 12=12 (απομένουν 6) .

Ετσι, Το 150 δεν διαιρείται ομοιόμορφα με το 12, επομένως το 150 δεν είναι κοινό πολλαπλάσιο του 3, του 6 και του 12. Επομένως, ο αριθμός 150 δεν μπορεί να είναι ο κοινός παρονομαστής των αρχικών κλασμάτων.

Απάντηση:

Απαγορεύεται.

Χαμηλότερος κοινός παρονομαστής, πώς να το βρείτε;

Στο σύνολο των αριθμών που είναι κοινοί παρονομαστές δεδομένων κλασμάτων, υπάρχει ένας μικρότερος φυσικός αριθμός, ο οποίος ονομάζεται ελάχιστος κοινός παρονομαστής. Ας διατυπώσουμε τον ορισμό του χαμηλότερου κοινού παρονομαστή αυτών των κλασμάτων.

Ορισμός.

Χαμηλότερος κοινός παρονομαστήςείναι ο μικρότερος αριθμός όλων των κοινών παρονομαστών αυτών των κλασμάτων.

Απομένει να ασχοληθούμε με το ερώτημα πώς να βρούμε τον λιγότερο κοινό διαιρέτη.

Δεδομένου ότι είναι ο λιγότερο θετικός κοινός διαιρέτης ενός δεδομένου συνόλου αριθμών, το LCM των παρονομαστών των δοσμένων κλασμάτων αντιπροσωπεύει τον ελάχιστο κοινό παρονομαστή των δοσμένων κλασμάτων.

Έτσι, η εύρεση του χαμηλότερου κοινού παρονομαστή των κλασμάτων καταλήγει στους παρονομαστές αυτών των κλασμάτων. Ας δούμε τη λύση στο παράδειγμα.

Παράδειγμα.

Να βρείτε τον χαμηλότερο κοινό παρονομαστή των κλασμάτων 3/10 και 277/28.

Διάλυμα.

Οι παρονομαστές αυτών των κλασμάτων είναι 10 και 28. Ο επιθυμητός χαμηλότερος κοινός παρονομαστής βρίσκεται ως το LCM των αριθμών 10 και 28. Στην περίπτωσή μας είναι εύκολο: αφού 10=2·5 και 28=2·2·7, τότε LCM(15, 28)=2·2·5·7=140.

Απάντηση:

140 .

Πώς να μειώσετε τα κλάσματα σε έναν κοινό παρονομαστή; Κανόνας, παραδείγματα, λύσεις

Συνήθως κοινά κλάσματαοδηγούν στον χαμηλότερο κοινό παρονομαστή. Θα γράψουμε τώρα έναν κανόνα που εξηγεί πώς να μειώσουμε τα κλάσματα στον χαμηλότερο κοινό τους παρονομαστή.

Κανόνας αναγωγής κλασμάτων στον χαμηλότερο κοινό παρονομαστήαποτελείται από τρία βήματα:

  • Αρχικά, βρείτε τον χαμηλότερο κοινό παρονομαστή των κλασμάτων.
  • Δεύτερον, ένας πρόσθετος παράγοντας υπολογίζεται για κάθε κλάσμα διαιρώντας τον χαμηλότερο κοινό παρονομαστή με τον παρονομαστή κάθε κλάσματος.
  • Τρίτον, ο αριθμητής και ο παρονομαστής κάθε κλάσματος πολλαπλασιάζονται με τον πρόσθετο παράγοντα του.

Ας εφαρμόσουμε τον αναφερόμενο κανόνα για να λύσουμε το ακόλουθο παράδειγμα.

Παράδειγμα.

Να μειώσουμε τα κλάσματα 5/14 και 7/18 στον χαμηλότερο κοινό τους παρονομαστή.

Διάλυμα.

Ας εκτελέσουμε όλα τα βήματα του αλγορίθμου για τη μείωση των κλασμάτων στον χαμηλότερο κοινό παρονομαστή.

Αρχικά βρίσκουμε τον ελάχιστο κοινό παρονομαστή, ο οποίος ισούται με το ελάχιστο κοινό πολλαπλάσιο των αριθμών 14 και 18. Αφού 14=2·7 και 18=2·3·3, τότε LCM(14, 18)=2·3·3·7=126.

Τώρα υπολογίζουμε πρόσθετους παράγοντες με τη βοήθεια των οποίων τα κλάσματα 5/14 και 7/18 θα μειωθούν στον παρονομαστή 126. Για το κλάσμα 5/14 ο πρόσθετος παράγοντας είναι 126:14=9, και για το κλάσμα 7/18 ο πρόσθετος παράγοντας είναι 126:18=7.

Απομένει να πολλαπλασιάσουμε τους αριθμητές και τους παρονομαστές των κλασμάτων 5/14 και 7/18 με επιπλέον συντελεστές 9 και 7, αντίστοιχα. Έχουμε και .

Έτσι, η αναγωγή των κλασμάτων 5/14 και 7/18 στον χαμηλότερο κοινό παρονομαστή έχει ολοκληρωθεί. Τα κλάσματα που προέκυψαν ήταν 45/126 και 49/126.